Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (4): 1064-1072    DOI: 10.11902/1005.4537.2023.284
Current Issue | Archive | Adv Search |
Effect of Electrical Parameters on Energy Consumption and Corrosion Resistance of Micro-arc Oxidation Coating on AZ31B Mg-alloy
TIAN Mengzhen1, WANG Yong2, LI Tao3, WANG Chuan2, GUO Quanzhong2(), GUO Jianxi4()
1. College of Chemistry, Liaoning University, Shenyang 110036, China
2. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3. Shandong Key Laboratory of Advanced Aluminium Materials and Technology, Binzhou Institute of Technology, Binzhou 256600, China
4. Naval Service Academy, Tianjin 300450, China
Cite this article: 

TIAN Mengzhen, WANG Yong, LI Tao, WANG Chuan, GUO Quanzhong, GUO Jianxi. Effect of Electrical Parameters on Energy Consumption and Corrosion Resistance of Micro-arc Oxidation Coating on AZ31B Mg-alloy. Journal of Chinese Society for Corrosion and protection, 2024, 44(4): 1064-1072.

Download:  HTML  PDF(9984KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Micro-arc oxidation (MAO) can improve the corrosion resistance of Mg-alloys, but it has the deficiency of high energy consumption, which restricts its large-scale application on Mg-alloy components. In order to reduce the energy consumption of micro-arc oxidation, micro-arc oxidation coatings were prepared on the surface of AZ31B Mg-alloy in an electrolyte of Na2SiO3 20 g/L, NaOH 2 g/L and NaF 2 g/L by pulsed power supply, and the effects of electrical parameters (frequency, duty cycle and current density) on the unit energy consumption and corrosion resistance of the coatings were studied by means of scanning electron microscopy, electrochemical testing and salt spray test. The results show that the frequency has less effect on the unit energy consumption of the coatings, but the higher the frequency, the better the corrosion resistance of the coatings; the duty cycle has more obvious effect on the energy consumption, with the increase of the duty cycle, the unit energy consumption of the coatings decreases, but the corrosion resistance decreases; the current density also has a significant influence on the energy consumption, the higher the current density, the higher the unit energy consumption of the coatings, but the change of current density has less effect on the corrosion resistance of the coatings.

Key words:  Micro-arc oxidation      Mg-alloy      energy consumption      corrosion resistance     
Received:  11 September 2023      32134.14.1005.4537.2023.284
ZTFLH:  TG174.4  
Fund: Bintech-IMR R&D Program(GYY-JSBU-2022-006)
Corresponding Authors:  GUO Quanzhong, E-mail: qzguo@imr.ac.cn;

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.284     OR     https://www.jcscp.org/EN/Y2024/V44/I4/1064

Fig.1  U-t and I-t curves of MAO at different frequencies: (a) direct current, (b) 100 Hz, (c) 500 Hz, (d) 1000 Hz

Frequency

Hz

Termination

voltage

V

Current density

A·dm-2

Oxidation

time

min

Thickness

μm

Area

cm2

Energy consumption

kW·h / (m2·μm)

1004031139501.26
5004001149501.29
10004001159501.39
Table 1  Energy consumption of MAO coatings formed at different frequencies
Fig.2  Morphologies of MAO coatings formed at a frequency of 100 Hz (a), 500 Hz (b) and 1000 Hz (c)
Fig.3  Polarization curves of MAO coatings formed at different frequencies
Frequency / HzEcorr / VIcorr / μA·cm-2
100-1.290.64
500-1.190.24
1000-1.170.06
Table 2  Fitting data of the polarization curves from Fig.3
Fig.4  Macro morphologies of MAO coatings formed at a frequency of 100 Hz (a), 500 Hz (b) and 1000 Hz (c) after 96 h neutral salt spray test
Frequency / HzSalt spray test time to level 9 / hSalt spray test time to level 8 / h
1002472
50096144
100096192
Table 3  Results of neutral salt spray test of MAO coatings formed at different frequencies

Duty

cycle

Termination

voltage

V

Current

density

A·dm-2

Oxidation

time

min

Thickness

μm

Area

cm2

Energy

consumption

kW·h / (m2·μm)

20%4001177502.32
50%4011149501.29
80%4021129501.12
Table 4  Energy consumption of MAO coatings formed at different duty cycle
Fig.5  Morphologies of MAO coatings formed at a duty cycle of 20% (a), 50% (b) and 80% (c)
Fig.6  Polarization curves of MAO coatings formed at different duty cycle
Duty cycleEcorr / VIcorr / μA·cm-2
20%-1.170.12
50%-1.190.24
80%-1.260.53
Table 5  Fitting data of the polarization curves from Fig.6
Fig.7  Macro morphologies of MAO coatings formed at a duty cycle of 20% (a), 50% (b) and 80% (c) after 96 h neutral salt spray test
Duty cycleSalt spray test time to level 9 / hSalt spray test time to level 8 / h
20%96144
50%96144
80%2472
Table 6  Results of neutral salt spray test of MAO coatings formed at different duty cycle

Current density

A·dm-2

Termination voltage

V

Oxidation time

min

Thickness

μm

Area

cm2

Energy consumption

kW·h / (m2·μm)

0.54002710501.12
1401149501.29
240188501.65
340167502.13
Table 7  Energy consumption of MAO coatings formed at different current densities
Fig.8  Morphologies of MAO coatings formed at a current density of 0.5 A·dm-2 (a), 1 A·dm-2 (b), 2 A·dm-2 (c) and 3 A·dm-2 (d)
Fig.9  Distribution of pore size and quantity on the surface of MAO coatings formed at different current densities
Fig.10  Polarization curves of MAO coatings formed at different current densities

Current density

A·dm-2

Ecorr

V

Icorr

μA·cm-2

0.5-1.190.22
1-1.190.24
2-1.190.28
3-1.210.31
Table 8  Fitting data of the polarization curves from Fig.10

Current

density

A·dm-2

Salt spray test time to

level 9 / h

Salt spray test time to

level 8 / h

0.596144
196144
296144
372120
Table 9  Results of neutral salt spray test of MAO coatings formed at different current densities
Fig.11  Macro morphologies of MAO coatings formed at a current density of 0.5 A·dm-2 (a), 1 A·dm-2 (b), 2 A·dm-2 (c) and 3 A·dm-2 (d) after 96 h neutral salt spray test
[1] Darband G B, Aliofkhazraei M, Hamghalam P, et al. Plasma electrolytic oxidation of magnesium and its alloys: mechanism, properties and applications [J]. J. Magnes. Alloy., 2017, 5: 74
[2] Lee Y K, Lee K, Jung T. Study on microarc oxidation of AZ31B magnesium alloy in alkaline metal silicate solution [J]. Electrochem. Commun., 2008, 10: 1716
[3] Li Y, Shi Z M, Chen X R, et al. Anodic hydrogen evolution on Mg [J]. J. Magnes. Alloy., 2021, 9: 2049
[4] Wu Y L, Wu L, Zheludkevich M L, et al. MgAl-V2O7 4- LDHs/(PEI/MXene)10 composite film for magnesium alloy corrosion protection [J]. J. Mater. Sci. Technol., 2021, 91: 28
[5] Zhang R F, Zhang S F, Duo S W. Influence of phytic acid concentration on coating properties obtained by MAO treatment on magnesium alloys [J]. Appl. Surf. Sci., 2009, 255: 7893
[6] Gao X H, Li Y F, Zhu J J, et al. Corrosion mechanism and surface protection method for magnesium-lithium alloy [J]. Chem. Ind. Eng. Prog., 2017, 36: 3373
doi: 10.16085/j.issn.1000-6613.2017-0198
高晓辉, 李玉峰, 祝晶晶 等. 镁锂合金的腐蚀机理及表面防护方法研究进展 [J]. 化工进展, 2017, 36: 3373
doi: 10.16085/j.issn.1000-6613.2017-0198
[7] Gao W Y, Han Z G, Guo X H, et al. Micro-arc oxidation technology and its application [J]. Hot Work. Technol., 2016, 45(24): 29
高文英, 韩新罡, 郭新华 等. 微弧氧化技术及其应用 [J]. 热加工工艺, 2016, 45(24): 29
[8] Jia Q R, Cui H W, Zhang T T, et al. General situation on research of micro-arc oxidation technology of magnesium alloys [J]. Mater. Prot., 2018, 51(8): 108
贾秋荣, 崔红卫, 张甜甜 等. 镁合金微弧氧化技术的研究概况 [J]. 材料保护, 2018, 51(8): 108
[9] Zhai Y B, Chen H B, Ma X T. Comparative study on micro arc oxidation film on AZ31B Mg alloy using pulse DC and AC powers [J]. Hot Work. Technol., 2013, 42(10): 198
翟彦博, 陈红兵, 马秀腾. 直/交流脉冲电源模式下AZ31B镁合金微弧氧化陶瓷膜的对比研究 [J]. 热加工工艺, 2013, 42(10): 198
[10] Tian M H, Ma Y Z, Ma Y, et al. Development of multimode output micro-arc oxidation power supply controlled with DSC [J]. Power Electron., 2012, 46(9): 88
田明辉, 马跃洲, 马 颖 等. DSC控制的多输出方式微弧氧化电源研制 [J]. 电力电子技术, 2012, 46(9): 88
[11] Xu C F, Yan X Y, Yang H W, et al. Effect of voltage on the microstructure and corrosion properties of MAO coatings on biodegradable ZK60 Mg alloys [J]. Int. J. Electrochem. Sci., 2018, 13: 3555
[12] Monfort F, Berkani A, Matykina E, et al. Development of anodic coatings on aluminium under sparking conditions in silicate electrolyte [J]. Corros. Sci., 2007, 49: 672
[13] Schlottig F, Schreckenbach J, Marx G. Preparation and characterisation of chromium and sodium tantalate layers by anodic spark deposition [J]. Fresenius J. Anal. Chem., 1999, 363: 209
[14] Matykina E, Berkani A, Skeldon P, et al. Real-time imaging of coating growth during plasma electrolytic oxidation of titanium [J]. Electrochim. Acta, 2007, 53: 1987
[15] Wu T, Gong C L, Wang P. Research progress of micro-arc oxidation in China [J]. Hot Work. Technol., 2015, 44(24): 16
伍 婷, 龚成龙, 王 平. 中国微弧氧化技术研究进展 [J]. 热加工工艺, 2015, 44(24): 16
[16] Zhang G S, Ding W G, Jiang B, et al. Effects of power supply modes on the microstructure and properties of micro-arc oxidation coatings formed on ADC12 high silicon aluminum alloy [J]. Equip. Environ. Eng., 2020, 17(8): 97
张广生, 丁伟国, 姜 波 等. 电源模式对ADC12高硅铝合金微弧氧化膜层组织与性能的影响 [J]. 装备环境工程, 2020, 17(8): 97
[17] Timoshenko A V, Magurova Y V. Investigation of plasma electrolytic oxidation processes of magnesium alloy MA2-1 under pulse polarisation modes [J]. Surf. Coat. Technol., 2005, 199: 135
[18] Wang S Y, Xia Y P, Liu L, et al. Preparation and performance of MAO coatings obtained on AZ91D Mg alloy under unipolar and bipolar modes in a novel dual electrolyte [J]. Ceram. Int., 2014, 40: 93
[19] Sun Z H, Liu M, Guo D P, et al. Analysis on recent development and problems of micro-arc oxidation technology [J]. Equip. Environ. Eng., 2009, 6(6): 46
孙志华, 刘 明, 国大鹏 等. 微弧氧化技术的发展现状和存在问题分析 [J]. 装备环境工程, 2009, 6(6): 46
[20] Yerokhin A L, Nie X, Leyland A, et al. Plasma electrolysis for surface engineering [J]. Surf. Coat. Technol., 1999, 122: 73
[21] Zhou T, Qin Z B, Luo Q, et al. Synthetic effects of frequency and duty ratio on growth characteristics, energy consumption and corrosion properties of microarc oxidized coating formed on Ti6Al4V [J]. Acta Metall. Sin. Engl. Lett., 2018, 31: 1109
[22] Ram Kumar V, Muthupandi V, Sivaprasad K, et al. Effect of frequency and duty cycle on growth, structure and corrosion resistance of micro arc oxidation coating on RZ5 magnesium alloy [J]. Key Eng. Mater., 2018, 775: 291
[23] Wei T B, Zhang X J, Wang B, et al. Effect of current density on growth and adhesion of micro-arc oxidation ceramic coatings on aluminum alloy [J]. Mater. Prot., 2004, 37(4): 4
魏同波, 张学俊, 王 博 等. 电流密度对铝合金微弧氧化膜的生长及结合力的影响 [J]. 材料保护, 2004, 37(4): 4
[1] LIN Yi, LIU Tao, GUO Yanbing, RUAN Qing, GUO Zhangwei, DONG Lihua. Research and Development of Welding Materials For Low-temperature Steel and Corrosion Evaluation Methods[J]. 中国腐蚀与防护学报, 2024, 44(4): 957-964.
[2] MA Xiaowei, XUE Rongjie, WANG Taotao, YANG Liang, LIU Zhenguang. Comparison of Corrosion Resistance of Zr-based Amorphous Alloys and Traditional Alloys in Seawater[J]. 中国腐蚀与防护学报, 2024, 44(4): 949-956.
[3] WU Yang, AN Yiqiang, WANG Liwei, CUI Zhongyu. Atmospheric Corrosion Behavior of Mg-alloys AZ31B and AZ91D in Simulated Low Temperature Environments[J]. 中国腐蚀与防护学报, 2024, 44(4): 1001-1010.
[4] ZHU Huiwen, ZHENG Li, ZHANG Hao, YU Baoyi, CUI Zhibo. Effect of Be on Oxidation Behavior and Flame Retardancy of WE43 Mg-alloy at High-temperature[J]. 中国腐蚀与防护学报, 2024, 44(4): 1022-1028.
[5] HE Jiaxuan, ZHANG Yutong, GUAN Xudong, TANG Jianhua, HUANG Hai, ZHAO Xuhui, TANG Yuming, ZUO Yu. Present Status and Progress of Corrosion Protection for Microchannel Heat Exchangers of Al-alloy[J]. 中国腐蚀与防护学报, 2024, 44(4): 993-1000.
[6] GENG Zhenzhen, ZHANG Yuzhu, DU Xiaojiang, WU Hanhui. Synergistic Effect of S2- and Cl- on Corrosion and Passivation Behavior of 316L Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2024, 44(3): 797-806.
[7] HUANG Jufeng, SONG Guangling. Research Progress on Corrosion Testing and Analysis of Mg-alloys[J]. 中国腐蚀与防护学报, 2024, 44(3): 519-528.
[8] SHI Chao, LI Jiahao, WANG Rongxiang, ZHANG Bo, ZHOU Lanxin, LIU Guangming, SHAO Yawei. Effect of Different Bias Voltages on Anti-corrosion Properties of Multi-arc Ion Plated Al-coatings on 45# Carbon Steel[J]. 中国腐蚀与防护学报, 2024, 44(2): 323-334.
[9] LIU Guoqiang, ZHANG Dongfang, CHEN Haoxiang, FAN Zhihong, XIONG Jianbo, WU Qingfa. Electrochemical Corrosion Behavior of 2304 Duplex Stainless Steel in a Simulated Pore Solution in Reinforced Concrete Serving in Marine Environment[J]. 中国腐蚀与防护学报, 2024, 44(1): 204-212.
[10] SONG Dongdong, WAN Hongxia, XU Dong, ZHOU Qian. Influence of Rolling on Corrosion Behavior of ZM5 Mg-alloy[J]. 中国腐蚀与防护学报, 2024, 44(1): 213-220.
[11] XIE Yun, LIU Ting, WANG Wen, ZHOU Jialin, TANG Song. Effect of Microstructure on Corrosion Resistance of a High-strength Ultralightweight Mg-Li Alloy[J]. 中国腐蚀与防护学报, 2024, 44(1): 255-260.
[12] SUN Shuo, DAI Jiaming, SONG Yingwei, AI Caijiao. Corrosion Behavior of Extruded EW75 Mg-alloy in Shenyang Industrial Atmosphere[J]. 中国腐蚀与防护学报, 2024, 44(1): 141-150.
[13] SHANG Ting, JIANG Guangrui, LIU Guanghui, QIN Hancheng. Effect of Heat Treatment Process on Microstructure and Corrosion Resistance of Zn-6%Al-3%Mg Coating[J]. 中国腐蚀与防护学报, 2023, 43(6): 1413-1418.
[14] XIAO Wentao, LIU Jing, PENG Jingjing, ZHANG Xian, WU Kaiming. Corrosion Resistance of Two Arc Spraying Coatings on EH36 Steel in Neutral Salt Spray Environment[J]. 中国腐蚀与防护学报, 2023, 43(5): 1003-1014.
[15] YANG Haifeng, YUAN Zhizhong, LI Jian, ZHOU Naipeng, GAO Feng. Effect of Ni Content on Corrosion Behavior of Cu-bearing Aged Weldable Steels in a Simulated Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2023, 43(5): 1022-1030.
No Suggested Reading articles found!