Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (4): 1055-1063    DOI: 10.11902/1005.4537.2023.321
Current Issue | Archive | Adv Search |
Corrosion Behaviour and Characteristics of 1050A Al-alloy Exposed in Typical Atmospheres of Shandong Province
FAN Zhibin(), GAO Zhiyue, ZONG Lijun, WU Yaping, LI Xingeng, JIANG Bo, DU Baoshuai
State Grid Shandong Electric Power Research Institute, Ji'nan 250001, China
Cite this article: 

FAN Zhibin, GAO Zhiyue, ZONG Lijun, WU Yaping, LI Xingeng, JIANG Bo, DU Baoshuai. Corrosion Behaviour and Characteristics of 1050A Al-alloy Exposed in Typical Atmospheres of Shandong Province. Journal of Chinese Society for Corrosion and protection, 2024, 44(4): 1055-1063.

Download:  HTML  PDF(7668KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A natural exposure test of 1050A Al-alloy was conducted in the typical atmospheric environments in the regions Qingdao, Dongying, Weihai and Weifang of Shandong Province for a period of 42 months. Afterwards, the corrosion behavior of the alloy was studied by means of macroscopic- and microscopic-morphology observation, corrosion rate measurement, corrosion product analysis and electrochemical test. The results show that 1050A Al-alloy has good atmospheric corrosion resistance, and the corrosion rate decreases with the increasing exposure time. Corrosion products are mainly Al-oxide and -hydroxide. The corrosion rate of 1050A Al-alloy tested at four different test sites may be ranked as following descending order: Dongying>Weihai>Qingdao>Weifang. The corrosion rate decreases with the extension of exposure time, which may be related to the presence of corrosion product scale. The laser confocal microscopic morphology analysis reveals that the corrosion is mainly pitting corrosion. The size of Pits was mainly below 10 μm after 42 months of exposure. The EIS result indicates that there exists a discernible discrepancy in the corrosion extent between the upward- and downward-sides of the test coupons at the initial exposure stage, which then gradually diminishes as the exposure time prolongs.

Key words:  Al-alloy      atmospheric corrosion      corrosion rate      corrosion characteristics     
Received:  10 October 2023      32134.14.1005.4537.2023.321
ZTFLH:  TG147  
Fund: Science and Technology Project of State Grid Corporation(5200-202016471A-0-0-00)
Corresponding Authors:  FAN Zhibin, E-mail: fan200403707@163.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.321     OR     https://www.jcscp.org/EN/Y2024/V44/I4/1055

Fig.1  Macroscopic morphologies of the front (a1-h1) and back (a2-h2) surfaces of 1050A Al-alloy samples after atmospheric exposure in Qingdao (a, b), Dongying (c, d), Weihai (e, f) and Weifang (g, h) for 12 months (a, c, e, g) and 42 months (b, d, f, h)
Fig.2  Corrosion rates of 1050A Al-alloy exposed to the atmospheric environments of Qingdao, Dongying, Weihai and Weifang in Shandong province
Fig.3  Raman spectroscopies of 1050A Al-alloy after atmospheric exposure in Qingdao, Dongying, Weihai and Weifang for 12 months (a, b) and 42 months (c, d)
Sampleγ-AlOOHα-AlOOHα-Al(OH)3γ-Al(OH)3Al2O3
Fig.3a495-49, 1057333-335,809-811,208,287,365297, 956814-816451
Fig.3b495-49,721-725, 1057208,287,838,608975377-379,705-713451
Fig.3c721-725,10571186975,928,377-379,407-409,705-713605
Fig.3d1057705-711,440-442,1186

429,608

928,975

451,605
Table 1  Corresponding positions of Raman peaks for various samples in Fig.3[25~30]
Fig.4  LSCM images of the front and back surfaces of 1050A Al-alloy samples after atmospheric exposure in Qingdao (a, b), Dongying (c, d), Weihai (e, f) and Weifang (g, h) for 42 months, respectively
Fig.5  Statistical diagrams (a, c) and cumulative probabilities (b, d) of pits for the samples after atmospheric exposure in the typical cities of Shandong province for 12 months (a, b) and 42 months (c, d)
Fig.6  EIS of 1050A Al-alloy exposed atmospherically to Qingdao (a), Dongying (b), Weihai (c) and Weifang (d)
Fig.7  Equivalent circuit model of EIS of 1050A Al-alloy
Fig.8  Polarization resistances of 1050A Al-alloy after atmospheric exposure in typical four cities of Shandong province
[1] Niu D X, Shi H, Li J Q. Research of evaluation index system of the development and construction of “two-type transformer substation” [J]. J. Sustain. Dev., 2010, 3(3): 115
[2] Zhu F H, Liu D J, Wang S. Main problems in the development of power transmission and distribution system and suggestions for environment management [J]. Electr. Power, 2009, 42(3): 63
朱法华, 刘大钧, 王 圣. 我国输变电系统发展过程中的主要问题及环境管理建议 [J]. 中国电力, 2009, 42(3): 63
[3] Han X C, Sun X, Chen H B, et al. The overview of development of UHV AC transmission technology in China [J]. Proc. CSEE, 2020, 40: 4371
韩先才, 孙 昕, 陈海波 等. 中国特高压交流输电工程技术发展综述 [J]. 中国电机工程学报, 2020, 40: 4371
[4] Xia X J, Wan X Y, Gao Y, et al. Corrosion characteristics of atmospheric corrosion of 1050 Al-alloy under power-on condition [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 1065
夏晓健, 万芯瑗, 高 燕 等. 1050铝合金在通电工况下大气腐蚀的腐蚀特征 [J]. 中国腐蚀与防护学报, 2022, 42: 1065
doi: 10.11902/1005.4537.2021.348
[5] Xu W S. Application of aluminum alloy conductor in building electrical engineering [J]. Anhui Archit., 2017, 24: 213
徐旺生. 铝合金电缆在建筑电气工程中的应用探析 [J]. 安徽建筑, 2017, 24: 213
[6] Xia W. Brief state of application and prospects of aluminum alloy cable in pharmaceutical project [J]. Chem. Pharm. Eng., 2013, 34(5): 61
夏 玮. 浅谈铝合金电缆在医药项目中的应用及前景 [J]. 医药工程设计, 2013, 34(5): 61
[7] Dai H Q. Advantages and disadvantages of aluminum alloy cable [J]. World Nonferrous Met., 2019, (19): 246
戴洪琦. 浅析铝合金电缆的优势和劣势 [J]. 世界有色金属, 2019, (19): 246
[8] Chen Y, Xu L M, Yao N N, et al. Atmospheric corrosion and protection of steel components for transmission and distribution projects [J]. North China Electr. Power, 2014, (12): 10
陈 云, 徐利民, 药宁娜 等. 输变电钢构件的大气腐蚀与防护 [J]. 华北电力技术, 2014, (12): 10
[9] Wang P, Sun X L, Ma D W, et al. Investigation and analysis of atmospheric corrosion of power transmission and transformation Equipment [J]. Corros. Sci. Prot. Technol., 2012, 24: 525
王 平, 孙心利, 马东伟 等. 输变电设备大气腐蚀情况调查与分析 [J]. 腐蚀科学与防护技术, 2012, 24: 525
[10] Chen Y X, Ni Q Z, Lin D Y, et al. Research progress in corrosion and service life prediction of metal materials in grid equipment under atmospheric environment [J]. Mater. Rep., 2016, 30(21): 89
陈云翔, 倪清钊, 林德源 等. 大气环境下电网设备金属材料的腐蚀及服役寿命预测研究进展 [J]. 材料导报, 2016, 30(21): 89
[11] Li T, Li X G, Dong C F, et al. Influence of Cl- concentration on the initial corrosion behavior of 2A12 aluminum alloy [J]. J. Univ. Sci. Technol. Beijing, 2009, 31: 1576
李 涛, 李晓刚, 董超芳 等. Cl-含量对2A12铝合金初期腐蚀行为的影响 [J]. 北京科技大学学报, 2009, 31: 1576
[12] Wang Z Y, Ma T, Han W, et al. Corrosion behavior of Al alloy LC4 in simulated polluted atmospheric environment [J]. J. Chin. Soc. Corros. Prot., 2005, 25: 321
王振尧, 马 腾, 韩薇 等. LC4铝合金在模拟污染大气环境中的腐蚀行为 [J]. 中国腐蚀与防护学报, 2005, 25: 321
[13] Yang P, Ni X M, Zong Q B, et al. Electrochemical corrosion behavior of LF21 aluminum alloy used in electric power system [J]. Corros. Sci. Prot. Technol., 2012, 24: 309
杨 萍, 黎学明, 宗庆彬 等. 电力系统用LF21铝合金的电化学腐蚀行为 [J]. 腐蚀科学与防护技术, 2012, 24: 309
[14] Han D S, Li D. Correlation study of accelerated corrosion testing and outfield testing of aluminum alloy [J]. Corros. Prot., 2008, 29: 119
韩德盛, 李 荻. LY12铝合金在海洋大气环境下加速腐蚀试验和外场暴露试验的相关性 [J]. 腐蚀与防护, 2008, 29: 119
[15] Zheng Q F, Sun S Q, Wen J G, et al. Atmospheric corrosion behaviors of aluminium and aluminium alloys in desert atmosphere of southern Xinjiang Province, China [J]. Chin. J. Nonferrous Met., 2009, 19: 353
郑弃非, 孙霜青, 温军国 等. 铝及铝合金在南疆沙漠大气环境中的腐蚀行为 [J]. 中国有色金属学报, 2009, 19: 353
[16] Yang D N, Dong K H, Fu C F, et al. Corrosion failure analysis on Al-alloy parts of knife switches in Hainan power grid [J]. Corros. Sci. Prot. Technol., 2016, 28: 82
杨大宁, 董凯辉, 符传福 等. 海南电网刀闸铝合金部件腐蚀失效分析 [J]. 腐蚀科学与防护技术, 2016, 28: 82
doi: 10.11903/1002.6495.2015.051
[17] Xie C P, Wang Z Y, Wei W, et al. Characterization on early atmospheric corrosion of aluminium in Hongyanhe nuclear power plant [J]. Equip. Environ. Eng., 2015, 12(3): 87
谢陈平, 王振尧, 魏伟 等. 铝在红沿河核电厂地区的初期大气腐蚀表征 [J]. 装备环境工程, 2015, 12(3): 87
[18] Sun S Q, Zhao Y B, Zheng Q F, et al. Evolution mechanism of pitting of Al Clad 7075 and 2024 aluminium alloy in coastal environment [J]. J. Chin. Soc. Corros. Prot., 2012, 32: 195
孙霜青, 赵予兵, 郑弃非 等. 包铝的7075和2024合金在海洋大气环境中的点蚀演化机制 [J]. 中国腐蚀与防护学报, 2012, 32: 195
[19] Elola A S, Otero T F, Porro A. Evolution of the pitting of aluminum exposed to the atmosphere [J]. Corrosion, 1992, 48: 854
[20] Liu Y J, Wang Z Y, Ke W. Characterization of corrosion products on pure al exposed in atmospheres at typical rural, industrial and coastal areas in China [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 47
刘艳洁, 王振尧, 柯 伟. 纯Al在3种典型沿海、工业和乡村大气中的腐蚀行为 [J]. 中国腐蚀与防护学报, 2016, 36: 47
doi: 10.11902/1005.4537.2015.018
[21] Sun S Q, Zheng Q F, Li D F, et al. Long-term atmospheric corrosion behaviour of aluminium alloys 2024 and 7075 in urban, coastal and industrial environments [J]. Corros. Sci., 2009, 51: 719
[22] Sun S Q, Zheng Q F, Li D F, et al. Exfoliation corrosion of extruded 2024-T4 in the coastal environments in China [J]. Corros. Sci., 2011, 53: 2527
[23] Godard H P, Jepson W B, Bothwell M R, et al. The Corrosion of Light Metals [M]. New York: John Wiley and Sons, 1967: 251
[24] Natesan M, Venkatachari G, Palaniswamy N. Kinetics of atmospheric corrosion of mild steel, zinc, galvanized iron and aluminium at 10 exposure stations in India [J]. Corros. Sci., 2006, 48: 3584
[25] Ruan H D, Frost R L, Kloprogge J T, et al. Far-infrared spectroscopy of alumina phases [J]. Spectrochim. Acta Part, 2002, 58A: 265
[26] Chen Y Y, Hyldtoft J, Jacobsen C J H, et al. NIR FT Raman spectroscopic studies of η-Al2O3 and Mo/η-Al2O3 catalysts [J]. Spectrochim. Acta Part, 1995, 51A: 2161
[27] Dyer C, Hendra P J, Forsling W, et al. Surface hydration of aqueous γ-Al2O3 studied by Fourier transform Raman and infrared spectroscopy—I. Initial results [J]. Spectrochim. Acta Part, 1993, 49A: 691
[28] Mariotto G, Cazzanelli E, Carturan G, et al. Raman and X-ray diffraction study of boehmite gels and their transformation to α- or β-alumina [J]. J. Solid State Chem., 1990, 86: 263
[29] Kiss A B, Keresztury G, Farkas L. Raman and i.r. spectra and structure of boehmite (γ-AlOOH). Evidence for the recently discarded D 172h space group [J]. Spectrochim. Acta Part, 1980, 36A: 653
[30] Misra A, Bist H D, Navati M S, et al. Thin film of aluminum oxide through pulsed laser deposition: a micro-Raman study [J]. Mater. Sci. Eng., 2001, 79B: 49
[31] Yin X T, Li W L, Li L, et al. Research status of corrosion behavior and anticorrosion measures of aluminum alloy under different climate in China [J]. Mater. Prot., 2019, 52(3): 111
尹学涛, 李文翰, 李 丽 等. 铝合金在我国不同气候条件下的腐蚀行为及防腐蚀措施的研究现状 [J]. 材料保护, 2019, 52(3): 111
[32] Zhang T, Shao Y W, Meng G Z, et al. Corrosion of hot extrusion AZ91 magnesium alloy: I-relation between the microstructure and corrosion behavior [J]. Corros. Sci., 2011, 53: 1960
[1] WANG Bo, AN Shizhong, GUO Junqing, JI Yunguang, LI Zhiqiang. Electrochemical Performance of Commercial MB1 and MB8 Mg-alloys in NaCl Solution[J]. 中国腐蚀与防护学报, 2024, 44(4): 1073-1080.
[2] QIAO Ze, LI Qingquan, LIU Xiaohang, LI Yizhou. Effect of Nitrate and Galvanic Couple on Crevice Corrosion Behavior of 7075-T651 Al-alloy in Neutral NaCl Solution[J]. 中国腐蚀与防护学报, 2024, 44(4): 1047-1054.
[3] WU Hailiang, CHEN Yuqiang, HUANG Liang, GU Hongyu, SUN Hongbo, LIU Jiajun, WANG Naiguang, SONG Yufeng. Corrosion Behavior of Welded Partitions of 3003 Al-alloy Used for Radiators of High-speed Train[J]. 中国腐蚀与防护学报, 2024, 44(4): 1081-1088.
[4] WENG Shuo, MENG Chao, ZHU Jiangfeng, WANG Ai, CHANG Xin, KANG Yun, HE Xiaotian, ZHAO Lihui. Effect of Fatigue Damage Under Stress-controlled Mode on the Corrosion Behavior of AA7075-T651 Al-alloy[J]. 中国腐蚀与防护学报, 2024, 44(4): 1029-1037.
[5] HE Jiaxuan, ZHANG Yutong, GUAN Xudong, TANG Jianhua, HUANG Hai, ZHAO Xuhui, TANG Yuming, ZUO Yu. Present Status and Progress of Corrosion Protection for Microchannel Heat Exchangers of Al-alloy[J]. 中国腐蚀与防护学报, 2024, 44(4): 993-1000.
[6] ZHANG Jiawei, HUANG Feng, WANG Hanmin, LANG Fengjun, YUAN Wei, LIU Jing. Effect of Rolling Scale on Evolution of Fast-stabilized Rust Layer and Corrosion Resistance of a Weathering Steel[J]. 中国腐蚀与防护学报, 2024, 44(4): 891-900.
[7] PENG Liyuan, WU Xinqiang, ZHANG Ziyu, TAN Jibo. Review on Relationship Between Hot Functional Test Water Chemistry and Corrosion Behavior of Related Component Materials in Pressurized Water Reactor Nuclear Power Plants[J]. 中国腐蚀与防护学报, 2024, 44(3): 529-539.
[8] FENG Xingguo, GU Zhuoran, FAN Qiqi, LU Xiangyu, YANG Yashi. Corrosion Resistance of 2205 Stainless Steel Bar in Modified Coral Concretes[J]. 中国腐蚀与防护学报, 2024, 44(3): 789-796.
[9] MA Heng, TIAN Huiyun, LIU Yuxi, WANG Yuexiang, HE Kang, CUI Zhongyu, CUI Hongzhi. Corrosion Behavior of S420 Steel in Different Marine Zones[J]. 中国腐蚀与防护学报, 2024, 44(3): 635-644.
[10] LI Tingyu, WEI Jie, CHEN Nan, WAN Ye, DONG Junhua. Corrosion Performance of Electrochemical Sensors for Atmospheric Environments[J]. 中国腐蚀与防护学报, 2024, 44(2): 365-371.
[11] CHANG Xueting, SONG Jiaqi, WANG Bing, WANG Dongsheng, CHEN Wencong, WANG Haifeng. Effect of Micro-alloying with Cr, N and Al on Corrosion Resistance of High Manganese Austenitic Steel in Acidic Salt Spray Environment[J]. 中国腐蚀与防护学报, 2024, 44(1): 47-58.
[12] XIONG Yiming, MEI Wan, WANG Zehua, YU Rui, XU Shiyao, WU Lei, ZHANG Xin. Corrosion Behavior of 5083 Al-alloy under Magnetic Field[J]. 中国腐蚀与防护学报, 2024, 44(1): 229-236.
[13] WANG Jingyu, ZHOU Xuejie, WANG Honglun, WU Jun, CHEN Hao, ZHENG Penghua. Initial Corrosion Behavior of Carbon Steel and High Strength Steel in South China Sea Atmosphere[J]. 中国腐蚀与防护学报, 2024, 44(1): 237-245.
[14] SUN Shuo, DAI Jiaming, SONG Yingwei, AI Caijiao. Corrosion Behavior of Extruded EW75 Mg-alloy in Shenyang Industrial Atmosphere[J]. 中国腐蚀与防护学报, 2024, 44(1): 141-150.
[15] ZHONG Jiaxin, GUAN Lei, LI Yu, HUANG Jiayong, SHI Lei. Effect of Second Phase on Corrosion Behavior of Friction-stir-welded Joints of 2xxx Series Al-alloy[J]. 中国腐蚀与防护学报, 2023, 43(6): 1247-1254.
No Suggested Reading articles found!