Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (3): 519-528    DOI: 10.11902/1005.4537.2023.185
Current Issue | Archive | Adv Search |
Research Progress on Corrosion Testing and Analysis of Mg-alloys
HUANG Jufeng1(), SONG Guangling2()
1. State Key Laboratory of Oil and Gas Equipment, CNPC Tubular Goods Research Institute, Xi'an 710076, China
2. Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
Cite this article: 

HUANG Jufeng, SONG Guangling. Research Progress on Corrosion Testing and Analysis of Mg-alloys. Journal of Chinese Society for Corrosion and protection, 2024, 44(3): 519-528.

Download:  HTML  PDF(3380KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Mg-alloy is the lightest engineering metal material, and its dissolution characteristics, corrosion mechanism and protective measures have been widely studied. Corrosion test methods and techniques for Mg-alloys have been critically important to the research. Due to the negative difference effect, the testing techniques and analysis methods of Mg-alloys are different from those of other metals. This paper reviews the research progress of corrosion test methods and techniques for Mg-alloys, including the general and characteristic test technologies, analyzes the applicable conditions and application cases of various testing technologies, and focuses on the comparison of corrosion rate testing methods. It is expected that the review will provide a solid foundation for the selection of reasonable corrosion test methods and techniques in the future research for Mg-alloys, which will avoid erroneous conclusions resulting from improper testing and analysis.

Key words:  Mg-alloy      testing method      electrochemical technology     
Received:  04 June 2023      32134.14.1005.4537.2023.185
ZTFLH:  TG174  
Fund: Natural Science Basic Research Program of Shaanxi(2024JC-YBQN-0500);Basic Research and Strategic Reserve Technology Research Fund of CNPC(2021DQ03(2022Z-11));National Natural Science Foundation of China(52250710159);National Natural Science Foundation of China(51731008)
Corresponding Authors:  SONG Guangling, E-mail: songgl@sustech.edu.cn;
HUANG Jufeng, E-mail: huangjufeng@cnpc.com.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.185     OR     https://www.jcscp.org/EN/Y2024/V44/I3/519

Fig.1  Sample preparations of Mg-alloy (a) and electrochemical test equipment (b) under polarized conditions[7]
Fig.2  Potentiodynamic polarization curve of pure magnesium in a saturated Mg(OH)2 solution: (a) experiemental and IR-corrected potentiostatic polarization curves, (b) average hydrogen evolution rates at different potentials, (c) evolved hydrogen volume vs. time[16]
Fig.3  Electrochemical impedance diagrams of Mg in 0.1 mol/L Na2SO4 solution after different immersion time at Ecorr (a), and at Ecorr and two anodic potentials over Ecorr (b) and for two anodic over potentials[1]
Fig.4  Potentiodynamic polarization curve (a), and time dependences of the potential (b), current density (c) and hydrogen evolution rate (d) of Mg specimen under alternate galvanostatic anodic-potentostatic cathodic step polarization in 0.1 mol/L HCl solution[21]
MaterialSolutionTimeMethodCorrosion rate / mm·a-1Reference
Mg5Y3.5%NaCl300 hHydrogen collection4.1[22]
Mg5Y3.5%NaCl400 sTafel extrapolation0.4[22]
Mg5Li1Al3.5%NaCl14 dMass loss38[23]
Mg5Li1Al3.5%NaCl20 mTafel extrapolation22[23]
AZ913.5%NaCl24 hMass loss1.6[24]
AZ913.5%NaCl15 mTafel extrapolation1.3[24]
Mg0.06CuHanks solution7 dMass loss30[25]
Mg0.06CuHanks solution30 mTafel extrapolation0.12[25]
Mg0.14In0.1 mol/L NaCl1 dMass loss7[26]
Mg0.14In0.1 mol/L NaCl10 mTafel extrapolation0.6[26]
Pure Mg0.1 mol/L NaCl1 dMass loss0.8[26]
Pure Mg0.1 mol/L NaCl10 mTafel extrapolation0.3[26]
Pure MgNaCl+ZnCl241.3 hHydrogen collection12[27]
Pure MgNaCl+ZnCl241.3 hMass loss14[27]
Pure Mg0.4 mol/L Na2SO47 dHydrogen collection0.5[28]
Pure Mg0.4 mol/L Na2SO47 dAC impedance0.2[28]
Pure Mg0.4 mol/L (NH4)2SO47 dHydrogen collection16[28]
Pure Mg0.4 mol/L (NH4)2SO47 dAC impedance12[28]
Table 1  Comparison of corrosion rates of various Mg-alloys
TechniqueMeasurementAdvantageDisadvantage
Scanning Vibration Electrode Technique (SVET)

Potential Difference/Current

Density

Real time mechanistic information, 2D-3D data presentation, easy to set up, easily used with other techniques such as SIET

Time and sample size tradeoff, could be slow, cannot use high conductivity electrolyte

of electrolyte is a concern

Scanning Electrochemical Microscopy (SECM)

Current/

Potential

Several modes of operation, can be combined with other techniquesSometimes needs a redox active mediator, needs a bipotentiostat

Localized EIS (LEIS)

Local Capacitance

and Resistance

High sensitivity (1 nV), provides local impedance which cannot be obtained by any other method, good for insulated substrates

Stray inductance, could be slow

Scanning Kelvin Probe (SKP)Work FunctionNo need of an electrolyte, short experimentsLow resolution of SKP
Scanning Ion-Selective Electrode TechniqueLocal pH, ion concentrationCan be combined with SVET, easy way to measure ion concentrationFouling and damage to the ion selective electrode, resolution
Table 2  Characteristics, advantages and disadvantages of micro-electrochemical technology[4]
Fig.5  Schematic illustration of influence of gas bubble in SVET test[29]
Fig.6  Optical image (a) and SKP (b) of magnesium surface after corrosion[32]
1 Huang J F, Song G L, Atrens A, et al. What activates the Mg surface-A comparison of Mg dissolution mechanisms [J]. J. Mater. Sci. Technol., 2020, 57: 204
doi: 10.1016/j.jmst.2020.03.060
2 Esmaily M, Svensson J E, Fajardo S, et al. Fundamentals and advances in magnesium alloy corrosion [J]. Prog. Mater. Sci., 2017, 89: 92
doi: 10.1016/j.pmatsci.2017.04.011
3 King A D, Birbilis N, Scully J R. Accurate electrochemical measurement of magnesium corrosion rates; A combined impedance, mass-loss and hydrogen collection study [J]. Electrochim. Acta, 2014, 121: 394
doi: 10.1016/j.electacta.2013.12.124
4 Jadhav N, Gelling V J. Review-The use of localized electrochemical techniques for corrosion studies [J]. J. Electrochem. Soc., 2019, 166: C3461
doi: 10.1149/2.0541911jes
5 Wang Z Q, Xu C X, Yang L J, et al. Microstructure and corrosion resistance of medical degradable Mg-2Y-1Zn-x Zr alloy [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 113
王中琪, 许春香, 杨丽景 等. 医用可降解Mg-2Y-1Zn-x Zr合金微观组织和耐蚀性能研究[J]. 中国腐蚀与防护学报, 2022, 42: 113
doi: 10.11902/1005.4537.2021.014
6 Atrens A, Shi Z M, Mehreen S U, et al. Review of Mg alloy corrosion rates [J]. J. Magnes. Alloy., 2020, 8: 989
doi: 10.1016/j.jma.2020.08.002
7 Shi Z M, Atrens A. An innovative specimen configuration for the study of Mg corrosion [J]. Corros. Sci., 2011, 53: 226
doi: 10.1016/j.corsci.2010.09.016
8 Huang J F, Song G L. Hydrogen evolution, efficiency and exacerbated galvanic corrosion damage of magnesium alloy anode [J]. J. Mater. Eng., 2021, 49(12): 48
黄居峰, 宋光铃. 镁合金阳极的析氢、效率与电偶腐蚀放大效应 [J]. 材料工程, 2021, 49(12): 48
doi: 10.11868/j.issn.1001-4381.2021.000287
9 Song G L, Atrens A, StJohn D. An hydrogen evolution method for the estimation of the corrosion rate of magnesium alloys [A]. Hryn J N. Magnesium Technology [M]. Warrendale: TMS, 2001: 255
10 Fajardo S, Frankel G S. Gravimetric method for hydrogen evolution measurements on dissolving magnesium [J]. J. Electrochem. Soc., 2015, 162: C693
doi: 10.1149/2.0241514jes
11 Lü X, Deng K K, Wang C J, et al. Effect of SiCp size on microstructure and corrosion properties of cast AZ91 Mg-alloys [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 135
吕 鑫, 邓坤坤, 王翠菊 等. SiCp尺寸对铸态AZ91镁合金显微组织与腐蚀性能的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 135
12 Światowska J, Volovitch P, Ogle K. The anodic dissolution of Mg in NaCl and Na2SO4 electrolytes by atomic emission spectroelectrochemistry [J]. Corros. Sci., 2010, 52: 2372
doi: 10.1016/j.corsci.2010.02.038
13 Rybalka K V. Determination of metal corrosion rate using the pH-metry by the method of compensating additives [J]. Russ. J. Electrochem., 2014, 50: 500
doi: 10.1134/S1023193514050085
14 Liu Z Q, He X X, Qi K, et al. Galvanic corrosion behavior for galvanic couple of AZ91D Mg-alloy/2002 Al-alloy in 0.5 mg/L NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 1016
刘泽琪, 何潇潇, 祁 康 等. AZ91D镁合金和2002铝合金在0.5 mg/L NaCl溶液中的电偶腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 1016
doi: 10.11902/1005.4537.2021.355
15 Fajardo S, Frankel G S. A kinetic model explaining the enhanced rates of hydrogen evolution on anodically polarized magnesium in aqueous environments [J]. Electrochem. Commun., 2017, 84: 36
doi: 10.1016/j.elecom.2017.10.001
16 Song G L, Unocic K A. The anodic surface film and hydrogen evolution on Mg [J]. Corros. Sci., 2015, 98: 758
doi: 10.1016/j.corsci.2015.05.047
17 Song G, Atrens A, St John D, et al. The anodic dissolution of magnesium in chloride and sulphate solutions [J]. Corros. Sci., 1997, 39: 1981
doi: 10.1016/S0010-938X(97)00090-5
18 Baril G, Galicia G, Deslouis C, et al. An impedance investigation of the mechanism of pure magnesium corrosion in sodium sulfate solutions [J]. J. Electrochem. Soc., 2007, 154: C108
doi: 10.1149/1.2401056
19 Gomes M P, Costa I, Pébère N, et al. On the corrosion mechanism of Mg investigated by electrochemical impedance spectroscopy [J]. Electrochim. Acta, 2019, 306: 61
doi: 10.1016/j.electacta.2019.03.080
20 Birbilis N, King A D, Thomas S, et al. Evidence for enhanced catalytic activity of magnesium arising from anodic dissolution [J]. Electrochim. Acta, 2014, 132: 277
doi: 10.1016/j.electacta.2014.03.133
21 Huang J F, Song G L, Zhu Y X, et al. The anodically polarized Mg surface products and accelerated hydrogen evolution [J]. J. Magnes. Alloy., 2023, 11: 230
doi: 10.1016/j.jma.2021.05.008
22 Liu X B, Shan D Y, Song Y W, et al. Influence of yttrium element on the corrosion behaviors of Mg-Y binary magnesium alloy [J]. J. Magnes. Alloy., 2017, 5: 26
doi: 10.1016/j.jma.2016.12.002
23 Xiang Q, Jiang B, Zhang Y X, et al. Effect of rolling-induced microstructure on corrosion behaviour of an as-extruded Mg-5Li-1Al alloy sheet [J]. Corros. Sci., 2017, 119(5): 14
doi: 10.1016/j.corsci.2017.02.009
24 Turan M E, Sun Y, Aydin F, et al. Effects of carbonaceous reinforcements on microstructure and corrosion properties of magnesium matrix composites [J]. Mater. Chem. Phys., 2018, 218: 182
doi: 10.1016/j.matchemphys.2018.07.050
25 Yan X D, Zhao M C, Yang Y, et al. Improvement of biodegradable and antibacterial properties by solution treatment and micro-arc oxidation (MAO) of a magnesium alloy with a trace of copper [J]. Corros. Sci., 2019, 156: 125
doi: 10.1016/j.corsci.2019.05.015
26 Gore P, Cain T W, Laird J, et al. Enrichment efficiency of noble alloying elements on magnesium and effect on hydrogen evolution [J]. Corros. Sci., 2019, 151: 206
doi: 10.1016/j.corsci.2019.02.026
27 Huang J F, Song G L, Wang Z M, et al. ZnThe2+ destabilized surface film and accelerated corrosion of magnesium [J]. J. Electrochem. Soc., 2020, 167: 161508
doi: 10.1149/1945-7111/abd002
28 Cao F Y, Zhao C, Song G L, et al. The corrosion of pure Mg accelerated by haze pollutant ammonium sulphate [J]. Corros. Sci., 2019, 150: 161
doi: 10.1016/j.corsci.2019.01.042
29 Huang J F, Song G L, Wang Z M, et al. The real current density distribution on Mg surface [J]. J. Electrochem. Soc., 2021, 168: 077505
30 Song G L, Xu Z Q. Crystal orientation and electrochemical corrosion of polycrystalline Mg [J]. Corros. Sci., 2012, 63: 100
doi: 10.1016/j.corsci.2012.05.019
31 Zhang P H, Pang K, Ding K K, et al. Research progress of scanning vibrating electrode technique in field of corrosion [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 315
张彭辉, 逄 昆, 丁康康 等. 扫描振动电极技术在腐蚀领域的应用进展 [J]. 中国腐蚀与防护学报, 2017, 37: 315
doi: 10.11902/1005.4537.2016.115
32 Bastos A C, Quevedo M C, Karavai O V, et al. Review—on the application of the scanning vibrating electrode technique (SVET) to corrosion research [J]. J. Electrochem. Soc., 2017, 164: C973
doi: 10.1149/2.0431714jes
33 Williams G, Birbilis N, McMurray H N. The source of hydrogen evolved from a magnesium anode [J]. Electrochem. Commun., 2013, 36: 1
doi: 10.1016/j.elecom.2013.08.023
34 Li L L, Zhang B, Tian B, et al. SVET study of galvanic corrosion of Al/Mg2Si couple in aqueous solutions at different pH [J]. J. Electrochem. Soc., 2017, 164: C240
doi: 10.1149/2.0671706jes
35 Liu Y, Liu X, Zhang Z C, et al. Comparative, real-time in situ monitoring of galvanic corrosion in Mg-Mg2Ca and Mg-MgZn2 couples in Hank’s solution [J]. Corros. Sci., 2019, 161: 108185
doi: 10.1016/j.corsci.2019.108185
36 Hampel M, Schenderlein M, Schary C, et al. Efficient detection of localized corrosion processes on stainless steel by means of scanning electrochemical microscopy (SECM) using a multi-electrode approach [J]. Electrochem. Commun., 2019, 101: 52
doi: 10.1016/j.elecom.2019.02.019
37 Liu W J, Cao F H, Xia Y, et al. Localized corrosion of magnesium alloys in NaCl solutions explored by scanning electrochemical microscopy in feedback mode [J]. Electrochim. Acta, 2014, 132: 377
doi: 10.1016/j.electacta.2014.04.044
38 Zhang Q H, Liu P, Zhu Z J, et al. Electrochemical detection of univalent Mg cation: A possible explanation for the negative difference effect during Mg anodic dissolution [J]. J. Electroanal. Chem., 2021, 880: 114837
doi: 10.1016/j.jelechem.2020.114837
39 Galicia G, Pébère N, Tribollet B, et al. Local and global electrochemical impedances applied to the corrosion behaviour of an AZ91 magnesium alloy [J]. Corros. Sci., 2009, 51: 1789
doi: 10.1016/j.corsci.2009.05.005
40 Calado L M, Taryba M G, Carmezim M J, et al. Self-healing ceria-modified coating for corrosion protection of AZ31 magnesium alloy [J]. Corros. Sci., 2018, 142: 12
doi: 10.1016/j.corsci.2018.06.013
41 Wu P P, Song G L, Zhu Y X, et al. The corrosion of Al-supersaturated Mg matrix and the galvanic effect of secondary phase nanoparticles [J]. Corros. Sci., 2021, 184: 109410
doi: 10.1016/j.corsci.2021.109410
42 Mei D, Lamaka S V, Feiler C, et al. The effect of small-molecule bio-relevant organic components at low concentration on the corrosion of commercially pure Mg and Mg-0.8Ca alloy: An overall perspective [J]. Corros. Sci., 2019, 153: 258
doi: 10.1016/j.corsci.2019.03.039
43 Lamaka S V, Karavai O V, Bastos A C, et al. Monitoring local spatial distribution of Mg2+, pH and ionic currents [J]. Electrochem. Commun., 2008, 10: 259
doi: 10.1016/j.elecom.2007.12.003
[1] SONG Dongdong, WAN Hongxia, XU Dong, ZHOU Qian. Influence of Rolling on Corrosion Behavior of ZM5 Mg-alloy[J]. 中国腐蚀与防护学报, 2024, 44(1): 213-220.
[2] SUN Shuo, DAI Jiaming, SONG Yingwei, AI Caijiao. Corrosion Behavior of Extruded EW75 Mg-alloy in Shenyang Industrial Atmosphere[J]. 中国腐蚀与防护学报, 2024, 44(1): 141-150.
[3] WU Jiahao, WU Liang, YAO Wenhui, YUAN Yuan, XIE Zhihui, WANG Jingfeng, PAN Fusheng. Properties of Layered Dihydroxyl Metal (MgAlLa) Oxide Composite Coatings on Different Micro-arc Oxidation Surfaces of Mg-Gd-Y-Zn-Mn Alloy[J]. 中国腐蚀与防护学报, 2023, 43(4): 693-703.
[4] HUANG Zhifeng, YONG Qiwen, FANG Rui, XIE Zhihui. Superhydrophobic and Corrosion-resistant Nickel-based Composite Coating on Magnesium Alloy[J]. 中国腐蚀与防护学报, 2023, 43(4): 755-764.
[5] LV Xin, DENG Kunkun, WANG Cuiju, NIE Kaibo, SHI Quanxin, LIANG Wei. Effect of SiCp Size on Microstructure and Corrosion Properties of Cast AZ91 Mg-alloys[J]. 中国腐蚀与防护学报, 2023, 43(1): 135-142.
[6] ZHAO Yanliang, ZHAO Jingmao. Research Progress on Protection and Self-healing Performance of Layered Double Hydroxides Coatings on Mg-alloy[J]. 中国腐蚀与防护学报, 2023, 43(1): 1-5.
[7] LIU Zeqi, HE Xiaoxiao, QI Kang, HUANG Hualiang. Galvanic Corrosion Behavior for Galvanic Couple of AZ91D Mg-alloy/2002 Al-alloy in 0.5 mg/L NaCl Solution[J]. 中国腐蚀与防护学报, 2022, 42(6): 1016-1026.
[8] LIU Yuxiang, XU Anyang. Characterization of Pitting Corrosion Behavior of AZ91 Mg-alloy without and with MAO Coating[J]. 中国腐蚀与防护学报, 2022, 42(6): 1034-1042.
[9] YANG Yange, CAO Jingyi, WANG Xingqi, FANG Zhigang, YU Hongfei, YU Baoxing, WANG Fuhui. Design and Performance of Zr- and/or Ti-based Chemical Conversion Coatings for Light Alloys[J]. 中国腐蚀与防护学报, 2022, 42(3): 387-394.
[10] YANG Xinyu, YANG Yuntian, LU Xiaopeng, ZHANG Tao, WANG Fuhui. Research Progress of Corrosion Inhibitor for Mg-alloy[J]. 中国腐蚀与防护学报, 2022, 42(3): 435-440.
[11] DAI Weili, WANG Jinghang, LUO Shuai, DU Ning, LIU Fan, XU Lidong, ZHANG Jun, SONG Yuehong, LIU Yanfeng. Fabrication of Super-hydrophobic Surface on AM60 Mg-alloy and Its Corrosion Resistance[J]. 中国腐蚀与防护学报, 2022, 42(2): 301-308.
[12] WANG Zhongqi, XU Chunxiang, YANG Lijing, TIAN Linhai, HUANG Tao, SHI Yixuan, YANG Wenfu. Microstructure and Corrosion Resistance of Medical Degradable Mg-2Y-1Zn-xZr Alloy[J]. 中国腐蚀与防护学报, 2022, 42(1): 113-119.
[13] CHEN Zhenning, YONG Xingyue, CHEN Xiaochun. Micro-defects in Micro-arc Oxidation Coatings on Mg-alloys[J]. 中国腐蚀与防护学报, 2022, 42(1): 1-8.
[14] ZHOU Dianmai, JIANG Lei, WANG Meiting, LIANG Hongjia, XIAO Yunlong, ZHENG Li, YU Baoyi. Effects of Ce(NO3)2 Concentration and Silicate Sealing Treatment on Calcium Phosphating Film on Surface of Mg-Zn-Y-Ca Alloy for High Speed Railway Corbel[J]. 中国腐蚀与防护学报, 2021, 41(6): 849-856.
[15] WANG Xiaoge, GAO Kewei, YAN Luchun, YANG Huisheng, PANG Xiaolu. Effect of Ce on Corrosion Resistance of Films of ZnAlCe-layered Double Hydroxides on Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(3): 335-340.
No Suggested Reading articles found!