|
|
Research Progress on Corrosion Testing and Analysis of Mg-alloys |
HUANG Jufeng1( ), SONG Guangling2( ) |
1. State Key Laboratory of Oil and Gas Equipment, CNPC Tubular Goods Research Institute, Xi'an 710076, China 2. Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China |
|
Cite this article:
HUANG Jufeng, SONG Guangling. Research Progress on Corrosion Testing and Analysis of Mg-alloys. Journal of Chinese Society for Corrosion and protection, 2024, 44(3): 519-528.
|
Abstract Mg-alloy is the lightest engineering metal material, and its dissolution characteristics, corrosion mechanism and protective measures have been widely studied. Corrosion test methods and techniques for Mg-alloys have been critically important to the research. Due to the negative difference effect, the testing techniques and analysis methods of Mg-alloys are different from those of other metals. This paper reviews the research progress of corrosion test methods and techniques for Mg-alloys, including the general and characteristic test technologies, analyzes the applicable conditions and application cases of various testing technologies, and focuses on the comparison of corrosion rate testing methods. It is expected that the review will provide a solid foundation for the selection of reasonable corrosion test methods and techniques in the future research for Mg-alloys, which will avoid erroneous conclusions resulting from improper testing and analysis.
|
Received: 04 June 2023
32134.14.1005.4537.2023.185
|
|
Fund: Natural Science Basic Research Program of Shaanxi(2024JC-YBQN-0500);Basic Research and Strategic Reserve Technology Research Fund of CNPC(2021DQ03(2022Z-11));National Natural Science Foundation of China(52250710159);National Natural Science Foundation of China(51731008) |
Corresponding Authors:
SONG Guangling, E-mail: songgl@sustech.edu.cn; HUANG Jufeng, E-mail: huangjufeng@cnpc.com.cn
|
1 |
Huang J F, Song G L, Atrens A, et al. What activates the Mg surface-A comparison of Mg dissolution mechanisms [J]. J. Mater. Sci. Technol., 2020, 57: 204
doi: 10.1016/j.jmst.2020.03.060
|
2 |
Esmaily M, Svensson J E, Fajardo S, et al. Fundamentals and advances in magnesium alloy corrosion [J]. Prog. Mater. Sci., 2017, 89: 92
doi: 10.1016/j.pmatsci.2017.04.011
|
3 |
King A D, Birbilis N, Scully J R. Accurate electrochemical measurement of magnesium corrosion rates; A combined impedance, mass-loss and hydrogen collection study [J]. Electrochim. Acta, 2014, 121: 394
doi: 10.1016/j.electacta.2013.12.124
|
4 |
Jadhav N, Gelling V J. Review-The use of localized electrochemical techniques for corrosion studies [J]. J. Electrochem. Soc., 2019, 166: C3461
doi: 10.1149/2.0541911jes
|
5 |
Wang Z Q, Xu C X, Yang L J, et al. Microstructure and corrosion resistance of medical degradable Mg-2Y-1Zn-x Zr alloy [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 113
|
|
王中琪, 许春香, 杨丽景 等. 医用可降解Mg-2Y-1Zn-x Zr合金微观组织和耐蚀性能研究[J]. 中国腐蚀与防护学报, 2022, 42: 113
doi: 10.11902/1005.4537.2021.014
|
6 |
Atrens A, Shi Z M, Mehreen S U, et al. Review of Mg alloy corrosion rates [J]. J. Magnes. Alloy., 2020, 8: 989
doi: 10.1016/j.jma.2020.08.002
|
7 |
Shi Z M, Atrens A. An innovative specimen configuration for the study of Mg corrosion [J]. Corros. Sci., 2011, 53: 226
doi: 10.1016/j.corsci.2010.09.016
|
8 |
Huang J F, Song G L. Hydrogen evolution, efficiency and exacerbated galvanic corrosion damage of magnesium alloy anode [J]. J. Mater. Eng., 2021, 49(12): 48
|
|
黄居峰, 宋光铃. 镁合金阳极的析氢、效率与电偶腐蚀放大效应 [J]. 材料工程, 2021, 49(12): 48
doi: 10.11868/j.issn.1001-4381.2021.000287
|
9 |
Song G L, Atrens A, StJohn D. An hydrogen evolution method for the estimation of the corrosion rate of magnesium alloys [A]. Hryn J N. Magnesium Technology [M]. Warrendale: TMS, 2001: 255
|
10 |
Fajardo S, Frankel G S. Gravimetric method for hydrogen evolution measurements on dissolving magnesium [J]. J. Electrochem. Soc., 2015, 162: C693
doi: 10.1149/2.0241514jes
|
11 |
Lü X, Deng K K, Wang C J, et al. Effect of SiCp size on microstructure and corrosion properties of cast AZ91 Mg-alloys [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 135
|
|
吕 鑫, 邓坤坤, 王翠菊 等. SiCp尺寸对铸态AZ91镁合金显微组织与腐蚀性能的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 135
|
12 |
Światowska J, Volovitch P, Ogle K. The anodic dissolution of Mg in NaCl and Na2SO4 electrolytes by atomic emission spectroelectrochemistry [J]. Corros. Sci., 2010, 52: 2372
doi: 10.1016/j.corsci.2010.02.038
|
13 |
Rybalka K V. Determination of metal corrosion rate using the pH-metry by the method of compensating additives [J]. Russ. J. Electrochem., 2014, 50: 500
doi: 10.1134/S1023193514050085
|
14 |
Liu Z Q, He X X, Qi K, et al. Galvanic corrosion behavior for galvanic couple of AZ91D Mg-alloy/2002 Al-alloy in 0.5 mg/L NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 1016
|
|
刘泽琪, 何潇潇, 祁 康 等. AZ91D镁合金和2002铝合金在0.5 mg/L NaCl溶液中的电偶腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 1016
doi: 10.11902/1005.4537.2021.355
|
15 |
Fajardo S, Frankel G S. A kinetic model explaining the enhanced rates of hydrogen evolution on anodically polarized magnesium in aqueous environments [J]. Electrochem. Commun., 2017, 84: 36
doi: 10.1016/j.elecom.2017.10.001
|
16 |
Song G L, Unocic K A. The anodic surface film and hydrogen evolution on Mg [J]. Corros. Sci., 2015, 98: 758
doi: 10.1016/j.corsci.2015.05.047
|
17 |
Song G, Atrens A, St John D, et al. The anodic dissolution of magnesium in chloride and sulphate solutions [J]. Corros. Sci., 1997, 39: 1981
doi: 10.1016/S0010-938X(97)00090-5
|
18 |
Baril G, Galicia G, Deslouis C, et al. An impedance investigation of the mechanism of pure magnesium corrosion in sodium sulfate solutions [J]. J. Electrochem. Soc., 2007, 154: C108
doi: 10.1149/1.2401056
|
19 |
Gomes M P, Costa I, Pébère N, et al. On the corrosion mechanism of Mg investigated by electrochemical impedance spectroscopy [J]. Electrochim. Acta, 2019, 306: 61
doi: 10.1016/j.electacta.2019.03.080
|
20 |
Birbilis N, King A D, Thomas S, et al. Evidence for enhanced catalytic activity of magnesium arising from anodic dissolution [J]. Electrochim. Acta, 2014, 132: 277
doi: 10.1016/j.electacta.2014.03.133
|
21 |
Huang J F, Song G L, Zhu Y X, et al. The anodically polarized Mg surface products and accelerated hydrogen evolution [J]. J. Magnes. Alloy., 2023, 11: 230
doi: 10.1016/j.jma.2021.05.008
|
22 |
Liu X B, Shan D Y, Song Y W, et al. Influence of yttrium element on the corrosion behaviors of Mg-Y binary magnesium alloy [J]. J. Magnes. Alloy., 2017, 5: 26
doi: 10.1016/j.jma.2016.12.002
|
23 |
Xiang Q, Jiang B, Zhang Y X, et al. Effect of rolling-induced microstructure on corrosion behaviour of an as-extruded Mg-5Li-1Al alloy sheet [J]. Corros. Sci., 2017, 119(5): 14
doi: 10.1016/j.corsci.2017.02.009
|
24 |
Turan M E, Sun Y, Aydin F, et al. Effects of carbonaceous reinforcements on microstructure and corrosion properties of magnesium matrix composites [J]. Mater. Chem. Phys., 2018, 218: 182
doi: 10.1016/j.matchemphys.2018.07.050
|
25 |
Yan X D, Zhao M C, Yang Y, et al. Improvement of biodegradable and antibacterial properties by solution treatment and micro-arc oxidation (MAO) of a magnesium alloy with a trace of copper [J]. Corros. Sci., 2019, 156: 125
doi: 10.1016/j.corsci.2019.05.015
|
26 |
Gore P, Cain T W, Laird J, et al. Enrichment efficiency of noble alloying elements on magnesium and effect on hydrogen evolution [J]. Corros. Sci., 2019, 151: 206
doi: 10.1016/j.corsci.2019.02.026
|
27 |
Huang J F, Song G L, Wang Z M, et al. ZnThe2+ destabilized surface film and accelerated corrosion of magnesium [J]. J. Electrochem. Soc., 2020, 167: 161508
doi: 10.1149/1945-7111/abd002
|
28 |
Cao F Y, Zhao C, Song G L, et al. The corrosion of pure Mg accelerated by haze pollutant ammonium sulphate [J]. Corros. Sci., 2019, 150: 161
doi: 10.1016/j.corsci.2019.01.042
|
29 |
Huang J F, Song G L, Wang Z M, et al. The real current density distribution on Mg surface [J]. J. Electrochem. Soc., 2021, 168: 077505
|
30 |
Song G L, Xu Z Q. Crystal orientation and electrochemical corrosion of polycrystalline Mg [J]. Corros. Sci., 2012, 63: 100
doi: 10.1016/j.corsci.2012.05.019
|
31 |
Zhang P H, Pang K, Ding K K, et al. Research progress of scanning vibrating electrode technique in field of corrosion [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 315
|
|
张彭辉, 逄 昆, 丁康康 等. 扫描振动电极技术在腐蚀领域的应用进展 [J]. 中国腐蚀与防护学报, 2017, 37: 315
doi: 10.11902/1005.4537.2016.115
|
32 |
Bastos A C, Quevedo M C, Karavai O V, et al. Review—on the application of the scanning vibrating electrode technique (SVET) to corrosion research [J]. J. Electrochem. Soc., 2017, 164: C973
doi: 10.1149/2.0431714jes
|
33 |
Williams G, Birbilis N, McMurray H N. The source of hydrogen evolved from a magnesium anode [J]. Electrochem. Commun., 2013, 36: 1
doi: 10.1016/j.elecom.2013.08.023
|
34 |
Li L L, Zhang B, Tian B, et al. SVET study of galvanic corrosion of Al/Mg2Si couple in aqueous solutions at different pH [J]. J. Electrochem. Soc., 2017, 164: C240
doi: 10.1149/2.0671706jes
|
35 |
Liu Y, Liu X, Zhang Z C, et al. Comparative, real-time in situ monitoring of galvanic corrosion in Mg-Mg2Ca and Mg-MgZn2 couples in Hank’s solution [J]. Corros. Sci., 2019, 161: 108185
doi: 10.1016/j.corsci.2019.108185
|
36 |
Hampel M, Schenderlein M, Schary C, et al. Efficient detection of localized corrosion processes on stainless steel by means of scanning electrochemical microscopy (SECM) using a multi-electrode approach [J]. Electrochem. Commun., 2019, 101: 52
doi: 10.1016/j.elecom.2019.02.019
|
37 |
Liu W J, Cao F H, Xia Y, et al. Localized corrosion of magnesium alloys in NaCl solutions explored by scanning electrochemical microscopy in feedback mode [J]. Electrochim. Acta, 2014, 132: 377
doi: 10.1016/j.electacta.2014.04.044
|
38 |
Zhang Q H, Liu P, Zhu Z J, et al. Electrochemical detection of univalent Mg cation: A possible explanation for the negative difference effect during Mg anodic dissolution [J]. J. Electroanal. Chem., 2021, 880: 114837
doi: 10.1016/j.jelechem.2020.114837
|
39 |
Galicia G, Pébère N, Tribollet B, et al. Local and global electrochemical impedances applied to the corrosion behaviour of an AZ91 magnesium alloy [J]. Corros. Sci., 2009, 51: 1789
doi: 10.1016/j.corsci.2009.05.005
|
40 |
Calado L M, Taryba M G, Carmezim M J, et al. Self-healing ceria-modified coating for corrosion protection of AZ31 magnesium alloy [J]. Corros. Sci., 2018, 142: 12
doi: 10.1016/j.corsci.2018.06.013
|
41 |
Wu P P, Song G L, Zhu Y X, et al. The corrosion of Al-supersaturated Mg matrix and the galvanic effect of secondary phase nanoparticles [J]. Corros. Sci., 2021, 184: 109410
doi: 10.1016/j.corsci.2021.109410
|
42 |
Mei D, Lamaka S V, Feiler C, et al. The effect of small-molecule bio-relevant organic components at low concentration on the corrosion of commercially pure Mg and Mg-0.8Ca alloy: An overall perspective [J]. Corros. Sci., 2019, 153: 258
doi: 10.1016/j.corsci.2019.03.039
|
43 |
Lamaka S V, Karavai O V, Bastos A C, et al. Monitoring local spatial distribution of Mg2+, pH and ionic currents [J]. Electrochem. Commun., 2008, 10: 259
doi: 10.1016/j.elecom.2007.12.003
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|