Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (2): 405-412    DOI: 10.11902/1005.4537.2023.146
Current Issue | Archive | Adv Search |
Bifunctional Calcium Aluminate Modified Silica Sol Coating for Reinforced Bar
YANG Shengjie1, GAO Yan1, GAO Xu1, ZHAO Peng2,3, WU Wei1, YU Jinshan2,3, ZHANG Junxi1()
1.Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
2.State Grid Tianjin Electric Power Research Institute, Tianjin 300384, China
3.Tianjin Key Laboratory of Internet of Things in Electricity, Tianjin 300384, China
Cite this article: 

YANG Shengjie, GAO Yan, GAO Xu, ZHAO Peng, WU Wei, YU Jinshan, ZHANG Junxi. Bifunctional Calcium Aluminate Modified Silica Sol Coating for Reinforced Bar. Journal of Chinese Society for Corrosion and protection, 2024, 44(2): 405-412.

Download:  HTML  PDF(4718KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A silica sol coating for corrosion protection of reinforce bars in concrete structures was prepared via mechanical blending and ultrasonic dispersion with water glass as the film precursor and calcium aluminate as filler. Then the effect of different amounts of calcium aluminate addition on the protective performance of the coating was studied. The structural morphology and ion exchange ability of calcium aluminate and its hydrates, as well as the structural morphology and protective performance of the coating were characterized by XRD, FT-IR, SEM, ion chromatograph analysis and electrochemical measurement. The results indicate that calcium aluminate can be hydrated to form LDH during the coating preparation, thus due to their anion exchange function, LDHs can absorb corrosive chloride ions from corrosive media, meanwhile, the layered structure of LDHs may be benefit to alleviate the internal stress generated during the coating curing process, in turn, eliminate the cracking in the coating and improve effectively the barrier performance of the coating, while slow down the infiltration rate of chloride ions and other corrosive ions reaching the surface of the steel bar, eventually enhance the protective performance of the silica sol coating against the steel bar corrosion.

Key words:  calcium aluminate      silica sol      coating      a steel bar      anion exchange      functional filler     
Received:  08 May 2023      32134.14.1005.4537.2023.146
ZTFLH:  TG174  
Fund: State Grid Tianjin Electric Power Company Science and Technology Project(KJ21-1-12)
Corresponding Authors:  ZHANG Junxi, E-mail: zhangjunxi@shiep.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.146     OR     https://www.jcscp.org/EN/Y2024/V44/I2/405

Fig.1  The variational of anion exchange capacity of C3A to chloride ions with time
Fig.2  SEM morphologies of C3A before (a) and after (b, c) ion exchange, and EDS results of the exchanged C3A sample (d)
Fig.3  C3A Infrared spectrum before and after ion exchange
Fig.4  XRD patterns of C3A Sample before and after ion exchange
Fig.5  XRD patterns of silica sol coating with and without C3A added
Fig.6  SEM morphologies of cross-section of the coating before (a) and after (b) adding C3A
Fig.7  Polarization curves of coating samples with different dosage of C3A
Additive / gEcorr / V vs SCEI0 / A·cm-2
Blank-0.641.09 × 10-6
0.2 g-0.5504.4 × 10-9
0.5 g-0.3753.08 × 10-10
0.8 g-0.5795.24 × 10-9
Table 1  Polarization curve fitting data of coatings with different additives
Fig.8  Bode diagram with different addition amounts: (a1, a2) no coating added, (b1, b2) adding 0.2 g C3A coating, (c1, c2)adding 0.5 g C3A coating, (d1, d2) adding 0.8 g C3A coating
Fig.9  Equivalent circuit for coatings with additives blank and 0.8 g sample (a), 0.2 g and 0.5 g sample (b)
Fig.10  Changes in Rf (a) and Rct (b) of the coating over time
Sample

Time

d

CPE1

nΩ-1·S n ·cm-2

Freq1

Rf

Ω·cm2

CPE2

nΩ-1·S n ·cm-2

Freq2

Rct

Ω·cm2

W
0.2 g17.09 × 10-100.91042.58 × 1081.261 × 10-70.65325.09 × 108/
38.808 × 10-90.85035.82 × 1078.504 × 10-100.91164.75 × 107/
56.661 × 10-100.91782.30 × 1071.269 × 10-80.64422.48 × 107/
76.17 × 10-110.63121.22 × 1074.929 × 10-110.65641.53 × 107/
91.708 × 10-110.90015.05 × 1066.351 × 10-90.5151.24 × 107/
111.609 × 10-90.59242.30 × 1061.165 × 10-50.70874.70 × 1068.794 × 1012
132.384 × 10-60.643716731.21 × 10-50.7477516901.097 × 10-17
153.184 × 10-60.6451557.51.336 × 10-50.73674.97 × 1043.428 × 10-16
0.5 g17.425 × 10-100.94112.88 × 1081.594 × 10-100.93086.68 × 108/
38.501 × 10-100.89171.07 × 1087.441 × 10-100.89.76 × 107/
59.217 × 10-100.8884.09 × 1072.038 × 10-80.55389.45 × 107/
75.738 × 10-80.83.62 × 1077.538 × 10-100.90592.11 × 107/
98.977 × 10-100.90891.21 × 1075 × 10-80.81.65 × 107/
114.398 × 10-90.83471.95 × 1061.1 × 10-70.66231.62 × 1071.723 × 10-6
131.967 × 10-80.7934397104.309 × 10-70.67471.45 × 1074.38 × 10-8
151.117 × 10-70.7301123101.55 × 10-60.6821.34 × 1071 × 1020
0.8 g17.439 × 10-100.91055.95 × 1062.162 × 10-80.59734.37 × 1087.5 × 10-7
36.956 × 10-100.91354.11 × 1061.811 × 10-80.60731.50 × 1077.5 × 10-7
51.331 × 10-80.82843.75 × 1068.562 × 10-100.90781.60 × 1074.679 × 10-7
75.368 × 10-80.2542.63 × 1061.466 × 10-90.85321.30 × 1074.804 × 10-7
96.631 × 10-90.92091.17 × 1062.861 × 10-70.5189.51 × 1061.385 × 10-5
111.173 × 10-90.92921.02 × 1065.268 × 10-80.43798.86 × 1063.668 × 10-5
131.823 × 10-90.92418823004.362 × 10-80.55156.27 × 1061.855 × 10-6
151.999 × 10-80.8314419204.995 × 10-70.62291.20 × 1063.526 × 10-7
Table 2  Fit values of coatings with different additives
1 Ma Y L, Zhang A L. Probability model of corrosion initiation time of steel in concrete structure in chloride environment[J]. Adv. Mater. Res., 2011, 243-249: 5632
2 Meredith P, Donald A M, Meller N, et al. Tricalcium aluminate hydration: microstructural observations by in-situ electron microscopy[J]. J. Mater. Sci., 2004, 39: 997
doi: 10.1023/B:JMSC.0000012933.74548.36
3 Meredith P, Donald A M, Meller N, et al. Tricalcium aluminate hydration: microstructural observations by in-situ electron microscopy[J]. J. Mater. Sci., 2004, 39: 997
doi: 10.1023/B:JMSC.0000012933.74548.36
4 Ming X, Li Y J, Liu Q, et al. Chloride binding behaviors and early age hydration of tricalcium aluminate in chloride-containing solutions[J]. Cem. Concr. Compos., 2023, 137: 104928
doi: 10.1016/j.cemconcomp.2023.104928
5 Birnin-Yauri U A, Glasser F P. Friedel’s salt, Ca2Al(OH)6(Cl,OH)·2H2O: its solid solutions and their role in chloride binding[J]. Cem. Concr. Res., 1998, 28: 1713
doi: 10.1016/S0008-8846(98)00162-8
6 Andrade Neto J S, de Matos P R, De la Torre A G, et al. The role of sodium and sulfate sources on the rheology and hydration of C3A polymorphs[J]. Cem. Concr. Res., 2022, 151: 106639
doi: 10.1016/j.cemconres.2021.106639
7 Kalinichev A G, Kirkpatrick R J. Molecular dynamics modeling of chloride binding to the surfaces of calcium hydroxide, hydrated calcium aluminate, and calcium silicate phases[J]. Chem. Mater., 2002, 14: 3539
doi: 10.1021/cm0107070
8 Pekna M, Siqin S, de Pablo Y, et al. Astrocyte responses to complement peptide C3a are highly context-dependent[J]. Neurochem. Res., 2023, 48: 1233
doi: 10.1007/s11064-022-03743-5
9 Liu H F, Cui X M, Zhang W P, et al. Low cost fabrication of anti-corrosive coatings on metal surfaces[J]. Rare Met. Mater. Eng., 2008, 37(suppl.1) : 341
刘海锋, 崔学民, 张伟鹏 等. 低成本制备铁基金属表面防腐蚀无机涂层[J]. 稀有金属材料与工程, 2008, 37(): 341
10 Luo R, Cai Y B, Wang C Y. Binding capability of chloride ions in mortar and paste with ground granulated blast furnace slag[J]. J. Build. Mater., 2001, 4: 148
罗 睿, 蔡跃波, 王昌义. 磨细矿渣净浆和砂浆结合外渗氯离子的性能[J]. 建筑材料学报, 2001, 4: 148
11 Guo M L, Xiao J, Wang J L. Role of calcium ion on chloride binding in hydrated C3A pastes blended with CaCO3 and CaSO4·2H2O[J]. J. Build. Mater., 2020, 23: 1
郭明磊, 肖 佳, 王佳雷. CaCO3和CaSO4·2H2O共同作用下Ca2+对C3A水化浆体固化氯离子性能的影响[J]. 建筑材料学报, 2020, 23: 1
12 Wang X M, Hou P K, Yu J H, et al. The effects of silica fume on C3A hydration[J]. Constr. Build. Mater., 2020, 250: 118766
doi: 10.1016/j.conbuildmat.2020.118766
13 Hughes T L, Methven C M, Jones T G J, et al. Determining cement composition by Fourier transform infrared spectroscopy[J]. Adv. Cem. Based Mater., 1995, 2: 91
doi: 10.1016/1065-7355(94)00031-X
14 Chen X C, Yao C C, Zhao T, et al. Immobilization remediation of Cr-contaminated soils by hydrocalumite and the relevant risk assessment[J]. China Environ. Sci., 2021, 41: 1790
陈晓晨, 尧聪聪, 赵 桐 等. 水化氯铝酸钙对土壤铬的钝化修复及风险评估[J]. 中国环境科学, 2021, 41: 1790
15 Wang S J, Lu D, Yuan S Z, et al. Complement C3a receptor inactivation attenuates retinal degeneration induced by oxidative damage[J]. Front. Neurosci., 2022, 16: 951491
doi: 10.3389/fnins.2022.951491
16 Ye S X, Feng P, Liu Y, et al. In situ nano-scale observation of C3A dissolution in water[J]. Cem. Concr. Res., 2020, 132: 106044
doi: 10.1016/j.cemconres.2020.106044
17 Hou P K, Wang X M, Zhou X M, et al. Regulations on the hydration, morphology, and sulfate-attack resistivity of C3A with micro/nano-silica particles[J]. Constr. Build. Mater., 2022, 324: 126388
doi: 10.1016/j.conbuildmat.2022.126388
18 Chen Y F, Meng F D, Qu Y Y, et al. One-step synthesis of superhydrophobic polyaniline capsules and its effect on corrosion resistance of organic coatings[J]. J. Chin. Soc. Corros. Prot., 2023, 43: 345
陈异凡, 孟凡帝, 曲优异 等. 超疏水聚苯胺胶囊的一步可控合成及其对有机涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2023, 43: 345
doi: 10.11902/1005.4537.2022.089
19 Jamali F, Danaee I, Zaarei D. Effect of nano-silica on the corrosion behavior of silicate conversion coatings on hot-dip galvanized steel[J]. Mater. Corros., 2015, 66: 459
20 Santana I, Pepe A, Jimenez-Pique E, et al. Silica-based hybrid coatings for corrosion protection of carbon steel. Part I: effect of pretreatment with phosphoric acid[J]. Surf. Coat. Technol., 2013, 236: 476
doi: 10.1016/j.surfcoat.2012.07.086
21 Zhao S Y, Tong X H, Liu F C, et al. Corrosion resistance of three zinc-rich epoxy coatings[J]. J. Chin. Soc. Corros. Prot., 2019, 39: 563
赵书彦, 童鑫红, 刘福春 等. 环氧富锌涂层防腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39: 563
doi: 10.11902/1005.4537.2019.231
22 Liu S H, Liu B, Xu D W, et al. Research progress on anti-corrosion coatings of layered double hydroxides[J]. J. Chin. Soc. Corros. Prot., 2022, 42: 16
刘术辉, 刘 斌, 徐大伟 等. 层状双金属氢氧化物防腐蚀涂层材料的研究进展[J]. 中国腐蚀与防护学报, 2022, 42: 16
doi: 10.11902/1005.4537.2021.021
[1] LIU Guo. Discussion on DC Voltage Gradient (DCVG) Measurement and %IR Calculation of Buried Coating Pipeline[J]. 中国腐蚀与防护学报, 2024, 44(2): 512-518.
[2] HAN Dongxiao, JI Wenhui, WANG Tong, WANG Wei. Water Penetration Behavior of Epoxy Coating Based on Distribution of Relaxation Time and Finite Element Simulation[J]. 中国腐蚀与防护学报, 2024, 44(2): 489-496.
[3] LI Shuo, LI Xichao, ZHAO Jingxiang, DAI Zuoqiang, XU Bin, SUN Mingyue, ZHENG Lili. Research Progress on Life-extension of Gun Barrel Based on Coating Modification[J]. 中国腐蚀与防护学报, 2024, 44(2): 295-302.
[4] ZHAO Peng, HAO Chunyan, YANG Shengjie, YU Jinshan, WU Shuang, YU Ben, ZHANG Junxi. Silica Sol Coating Modified by Bifunctional Titanium Phosphate for Reinforce Bars[J]. 中国腐蚀与防护学报, 2024, 44(2): 413-421.
[5] SHI Chao, LI Jiahao, WANG Rongxiang, ZHANG Bo, ZHOU Lanxin, LIU Guangming, SHAO Yawei. Effect of Different Bias Voltages on Anti-corrosion Properties of Multi-arc Ion Plated Al-coatings on 45# Carbon Steel[J]. 中国腐蚀与防护学报, 2024, 44(2): 323-334.
[6] JIANG Bochen, LEI Yanhua, ZHANG Yuliang, LI Xiaofeng, LIU Tao, DONG Lihua. Research Progress on Application of Functional Superhydrophobic Coatings for Anti-icing in Polar Regions[J]. 中国腐蚀与防护学报, 2024, 44(1): 1-14.
[7] CHEN Shirun, CHEN Wenge, QIAN Ying, ZHANG Hui. Preparation and Perfromance of Rare Earth Cerium Modified Graphene Oxide / Waterborne Epoxy Resin Composite Coating[J]. 中国腐蚀与防护学报, 2024, 44(1): 107-118.
[8] YUAN Xiaohu, LI Dingjun, WANG Tianjian, GUO Xianping, ZHANG Naiqiang, ZHU Zhongliang. Oxidation Behavior of Three Different Ni-Cr Coatings in 630oC/25 MPa Supercritical Water[J]. 中国腐蚀与防护学报, 2024, 44(1): 119-129.
[9] JIANG Guangrui, LIU Guanghui, SHANG Ting. Effect of Heat Treatment Process on Microstructure and Corrosion Resistance of ZnAlMg Coating[J]. 中国腐蚀与防护学报, 2024, 44(1): 246-254.
[10] LI Jiancheng, ZHAO Jing, XIE Xin, WANG Jinlong, CHEN Minghui, WANG Fuhui. Preparation of Phosphate Coatings on Ti-alloy and Their Corrosion Behavior Beneath Salt-mixture in Water Vapor Flow at 650oC[J]. 中国腐蚀与防护学报, 2024, 44(1): 159-166.
[11] FAN Yufang, ZHANG Yafei, YIN Liusen, ZHAO Conghui, HE Yanbin, ZHANG Chuanxiang. Research Progress on Carbon Dots in Field of Metal Corrosion and Protection[J]. 中国腐蚀与防护学报, 2023, 43(6): 1237-1246.
[12] SHANG Ting, JIANG Guangrui, LIU Guanghui, QIN Hancheng. Effect of Heat Treatment Process on Microstructure and Corrosion Resistance of Zn-6%Al-3%Mg Coating[J]. 中国腐蚀与防护学报, 2023, 43(6): 1413-1418.
[13] QU Weiwei, CHEN Zehao, PEI Yanling, LI Shusuo, WANG Fuhui. Spreading and Corrosion Behavior of CMAS Melt on Different Materials for Thermal Barrier Coating[J]. 中国腐蚀与防护学报, 2023, 43(6): 1407-1412.
[14] TIAN Guangyuan, YAN Chengming, YANG Zhihao, WANG Junsheng. Research Progress on Corrosion and Protection of Corrosion-resistant Mg-Li Alloys[J]. 中国腐蚀与防护学报, 2023, 43(6): 1255-1263.
[15] ZHANG Kaili, DU Lili, TAN Jun, LIU Xiangzhou, MA Ji, QIU Ping. Preparation and Properties of Slippery Anti-corrosion Coating Based on SiO2 with Coral Cluster Morphology[J]. 中国腐蚀与防护学报, 2023, 43(6): 1319-1328.
No Suggested Reading articles found!