|
|
Bifunctional Calcium Aluminate Modified Silica Sol Coating for Reinforced Bar |
YANG Shengjie1, GAO Yan1, GAO Xu1, ZHAO Peng2,3, WU Wei1, YU Jinshan2,3, ZHANG Junxi1( ) |
1.Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China 2.State Grid Tianjin Electric Power Research Institute, Tianjin 300384, China 3.Tianjin Key Laboratory of Internet of Things in Electricity, Tianjin 300384, China |
|
Cite this article:
YANG Shengjie, GAO Yan, GAO Xu, ZHAO Peng, WU Wei, YU Jinshan, ZHANG Junxi. Bifunctional Calcium Aluminate Modified Silica Sol Coating for Reinforced Bar. Journal of Chinese Society for Corrosion and protection, 2024, 44(2): 405-412.
|
Abstract A silica sol coating for corrosion protection of reinforce bars in concrete structures was prepared via mechanical blending and ultrasonic dispersion with water glass as the film precursor and calcium aluminate as filler. Then the effect of different amounts of calcium aluminate addition on the protective performance of the coating was studied. The structural morphology and ion exchange ability of calcium aluminate and its hydrates, as well as the structural morphology and protective performance of the coating were characterized by XRD, FT-IR, SEM, ion chromatograph analysis and electrochemical measurement. The results indicate that calcium aluminate can be hydrated to form LDH during the coating preparation, thus due to their anion exchange function, LDHs can absorb corrosive chloride ions from corrosive media, meanwhile, the layered structure of LDHs may be benefit to alleviate the internal stress generated during the coating curing process, in turn, eliminate the cracking in the coating and improve effectively the barrier performance of the coating, while slow down the infiltration rate of chloride ions and other corrosive ions reaching the surface of the steel bar, eventually enhance the protective performance of the silica sol coating against the steel bar corrosion.
|
Received: 08 May 2023
32134.14.1005.4537.2023.146
|
|
Fund: State Grid Tianjin Electric Power Company Science and Technology Project(KJ21-1-12) |
Corresponding Authors:
ZHANG Junxi, E-mail: zhangjunxi@shiep.edu.cn
|
1 |
Ma Y L, Zhang A L. Probability model of corrosion initiation time of steel in concrete structure in chloride environment[J]. Adv. Mater. Res., 2011, 243-249: 5632
|
2 |
Meredith P, Donald A M, Meller N, et al. Tricalcium aluminate hydration: microstructural observations by in-situ electron microscopy[J]. J. Mater. Sci., 2004, 39: 997
doi: 10.1023/B:JMSC.0000012933.74548.36
|
3 |
Meredith P, Donald A M, Meller N, et al. Tricalcium aluminate hydration: microstructural observations by in-situ electron microscopy[J]. J. Mater. Sci., 2004, 39: 997
doi: 10.1023/B:JMSC.0000012933.74548.36
|
4 |
Ming X, Li Y J, Liu Q, et al. Chloride binding behaviors and early age hydration of tricalcium aluminate in chloride-containing solutions[J]. Cem. Concr. Compos., 2023, 137: 104928
doi: 10.1016/j.cemconcomp.2023.104928
|
5 |
Birnin-Yauri U A, Glasser F P. Friedel’s salt, Ca2Al(OH)6(Cl,OH)·2H2O: its solid solutions and their role in chloride binding[J]. Cem. Concr. Res., 1998, 28: 1713
doi: 10.1016/S0008-8846(98)00162-8
|
6 |
Andrade Neto J S, de Matos P R, De la Torre A G, et al. The role of sodium and sulfate sources on the rheology and hydration of C3A polymorphs[J]. Cem. Concr. Res., 2022, 151: 106639
doi: 10.1016/j.cemconres.2021.106639
|
7 |
Kalinichev A G, Kirkpatrick R J. Molecular dynamics modeling of chloride binding to the surfaces of calcium hydroxide, hydrated calcium aluminate, and calcium silicate phases[J]. Chem. Mater., 2002, 14: 3539
doi: 10.1021/cm0107070
|
8 |
Pekna M, Siqin S, de Pablo Y, et al. Astrocyte responses to complement peptide C3a are highly context-dependent[J]. Neurochem. Res., 2023, 48: 1233
doi: 10.1007/s11064-022-03743-5
|
9 |
Liu H F, Cui X M, Zhang W P, et al. Low cost fabrication of anti-corrosive coatings on metal surfaces[J]. Rare Met. Mater. Eng., 2008, 37(suppl.1) : 341
|
|
刘海锋, 崔学民, 张伟鹏 等. 低成本制备铁基金属表面防腐蚀无机涂层[J]. 稀有金属材料与工程, 2008, 37(): 341
|
10 |
Luo R, Cai Y B, Wang C Y. Binding capability of chloride ions in mortar and paste with ground granulated blast furnace slag[J]. J. Build. Mater., 2001, 4: 148
|
|
罗 睿, 蔡跃波, 王昌义. 磨细矿渣净浆和砂浆结合外渗氯离子的性能[J]. 建筑材料学报, 2001, 4: 148
|
11 |
Guo M L, Xiao J, Wang J L. Role of calcium ion on chloride binding in hydrated C3A pastes blended with CaCO3 and CaSO4·2H2O[J]. J. Build. Mater., 2020, 23: 1
|
|
郭明磊, 肖 佳, 王佳雷. CaCO3和CaSO4·2H2O共同作用下Ca2+对C3A水化浆体固化氯离子性能的影响[J]. 建筑材料学报, 2020, 23: 1
|
12 |
Wang X M, Hou P K, Yu J H, et al. The effects of silica fume on C3A hydration[J]. Constr. Build. Mater., 2020, 250: 118766
doi: 10.1016/j.conbuildmat.2020.118766
|
13 |
Hughes T L, Methven C M, Jones T G J, et al. Determining cement composition by Fourier transform infrared spectroscopy[J]. Adv. Cem. Based Mater., 1995, 2: 91
doi: 10.1016/1065-7355(94)00031-X
|
14 |
Chen X C, Yao C C, Zhao T, et al. Immobilization remediation of Cr-contaminated soils by hydrocalumite and the relevant risk assessment[J]. China Environ. Sci., 2021, 41: 1790
|
|
陈晓晨, 尧聪聪, 赵 桐 等. 水化氯铝酸钙对土壤铬的钝化修复及风险评估[J]. 中国环境科学, 2021, 41: 1790
|
15 |
Wang S J, Lu D, Yuan S Z, et al. Complement C3a receptor inactivation attenuates retinal degeneration induced by oxidative damage[J]. Front. Neurosci., 2022, 16: 951491
doi: 10.3389/fnins.2022.951491
|
16 |
Ye S X, Feng P, Liu Y, et al. In situ nano-scale observation of C3A dissolution in water[J]. Cem. Concr. Res., 2020, 132: 106044
doi: 10.1016/j.cemconres.2020.106044
|
17 |
Hou P K, Wang X M, Zhou X M, et al. Regulations on the hydration, morphology, and sulfate-attack resistivity of C3A with micro/nano-silica particles[J]. Constr. Build. Mater., 2022, 324: 126388
doi: 10.1016/j.conbuildmat.2022.126388
|
18 |
Chen Y F, Meng F D, Qu Y Y, et al. One-step synthesis of superhydrophobic polyaniline capsules and its effect on corrosion resistance of organic coatings[J]. J. Chin. Soc. Corros. Prot., 2023, 43: 345
|
|
陈异凡, 孟凡帝, 曲优异 等. 超疏水聚苯胺胶囊的一步可控合成及其对有机涂层防腐性能的影响[J]. 中国腐蚀与防护学报, 2023, 43: 345
doi: 10.11902/1005.4537.2022.089
|
19 |
Jamali F, Danaee I, Zaarei D. Effect of nano-silica on the corrosion behavior of silicate conversion coatings on hot-dip galvanized steel[J]. Mater. Corros., 2015, 66: 459
|
20 |
Santana I, Pepe A, Jimenez-Pique E, et al. Silica-based hybrid coatings for corrosion protection of carbon steel. Part I: effect of pretreatment with phosphoric acid[J]. Surf. Coat. Technol., 2013, 236: 476
doi: 10.1016/j.surfcoat.2012.07.086
|
21 |
Zhao S Y, Tong X H, Liu F C, et al. Corrosion resistance of three zinc-rich epoxy coatings[J]. J. Chin. Soc. Corros. Prot., 2019, 39: 563
|
|
赵书彦, 童鑫红, 刘福春 等. 环氧富锌涂层防腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39: 563
doi: 10.11902/1005.4537.2019.231
|
22 |
Liu S H, Liu B, Xu D W, et al. Research progress on anti-corrosion coatings of layered double hydroxides[J]. J. Chin. Soc. Corros. Prot., 2022, 42: 16
|
|
刘术辉, 刘 斌, 徐大伟 等. 层状双金属氢氧化物防腐蚀涂层材料的研究进展[J]. 中国腐蚀与防护学报, 2022, 42: 16
doi: 10.11902/1005.4537.2021.021
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|