Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (3): 707-715    DOI: 10.11902/1005.4537.2023.209
Current Issue | Archive | Adv Search |
Inhibition of Imidazolines on CO2 Induced Corrosion of Carbon Steel in Oil and Water Alternatively Wetting Conditions
OUYANG Jialu1, WANG Xixi1, HAN Xia2, WANG Ziming1()
1. Center for Marine Materials Corrosion and Protection, College of Materials, Xiamen University, Xiamen 361005, China
2. Sinopec Petroleum Engineering Design Co., Ltd., Dongying 257026, China
Cite this article: 

OUYANG Jialu, WANG Xixi, HAN Xia, WANG Ziming. Inhibition of Imidazolines on CO2 Induced Corrosion of Carbon Steel in Oil and Water Alternatively Wetting Conditions. Journal of Chinese Society for Corrosion and protection, 2024, 44(3): 707-715.

Download:  HTML  PDF(8980KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Corrosion inhibitor is the most commonly used for corrosion control in oil production, but the relevant inhibition mechanism in complex CO2 containing multiphase flow environment is still unclear. The effect of two typical oil-soluble and water-soluble imidazoline inhibitors on CO2 induced corrosion of carbon steel in oil and water alternatively wetting conditions was investigated. It was found that the corrosion inhibition effect of the water-soluble imidazoline was better than that of the oil-soluble imidazoline, and the difference was mainly attributed to the performance of interface oil/water. The oil-soluble imidazoline molecules can improve the inhibition effect by enhancing the self-repair on the oil phase side, while the water-soluble imidazoline molecules can effectively inhibit the generation and growth of water droplets at the interface oil/water, weaken the rupture of CO2 to the oil layer, and enhance the corrosion inhibition in dynamic wetting conditions.

Key words:  CO2 corrosion      imidazoline inhibitor      oil-water alternate wetting     
Received:  01 July 2023      32134.14.1005.4537.2023.209
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(52271075)
Corresponding Authors:  WANG Ziming, E-mail: zmwang@xmu.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.209     OR     https://www.jcscp.org/EN/Y2024/V44/I3/707

Fig.1  Infrared spectra of oil-soluble and water-soluble imidazoline inhibitors
Fig.2  Rupture time of oil layer on oil coated RCE in different solution systems under the conditions of 0 (a), 400 r/min (b) and 600 r/min (c), average rupture time at different rotating speeds (d) of oil layer
Fig.3  Localized corrosion morphologies of RCE after rupture of the oil layers in the solutions without (a-c) and with oil-soluble (d-f) and water-soluble (g-i) inhibitors
Fig.4  Potentiostatic polarization curves of RCE after dry-wet alternative exposure for 30 cycles at different rotating speeds in the carbonated solutions without (a) and with oil-soluble (b) and water-soluble (c) inhibitors, and correspondingly measured dissolution mitigation efficiency (DME) (d)
Fig.5  Measurement schemes (a, b) and statistical results (c, d) of dynamic contact angle (a, c) and water-in-oil static contact angle (b, d)
SampleRaman shift / cm-1Molecular formulaFunctional groupVibration typeRef.
100# mineral oil2850—CH2C—Hvsym.a[25,26]
2869—CH3C—Hvsym.a[25]
2890—CHC—Hvsym.a[27]
2928—CH2C—Hvsym.a[27]
2959—CH3C—Hvasym.b[27]
0.1 mol/L NaCl solution3255 (peak1)H2OO—Hvasym.b[28]
3452 (peak2)H2OO—Hvc[28]
3603 (peak3)H2OO—Hvc[28]
Table 1  Raman peaks of 100# mineral oil and 0.1 mol/L NaCl solution
Fig.6  Bulk (a, c) and interfacial (b, d) Raman peaks of water (a, b) and oil (c, d)
Fig.7  Relative areal ratios of Raman sub-peaks of water and oil under different conditions: (a) water peak, (b) oil peak 2848 cm-1, (c) oil peak 2869 cm-1, (d) oil peak 2927 cm-1
1 Wang Z M, Song G L, Zhang J. Corrosion control in CO2 enhanced oil recovery from a perspective of multiphase fluids [J]. Front. Mater., 2019, 6: 272
doi: 10.3389/fmats.2019.00272
2 Ding W G, Xu D J, Zheng G H, et al. Research progress on application of carbon dioxide in energy development [J]. Modern Chem. Ind., 2023, 43(3): 13
丁文刚, 许冬进, 郑光洪 等. 二氧化碳在能源开发应用中的研究进展 [J]. 现代化工, 2023, 43(3): 13
3 Zhang Z L, Lü G Z, Wang J. CCUS and its application in Shengli Oilfield [J]. Petrol. Reserv. Evaluat. Dev., 2021, 11: 812
张宗檩, 吕广忠, 王 杰. 胜利油田CCUS技术及应用 [J]. 油气藏评价与开发, 2021, 11: 812
4 Lei Y J. Suggesting to conduct large-scale CCUS demonstration and industrial cluster construction [J]. Environ. Econ., 2021, (16): 40
雷英杰. 中国二氧化碳捕集利用与封存(CCUS)年度报告(2021)发布 建议开展大规模CCUS示范与产业化集群建设 [J]. 环境经济, 2021, (16): 40
5 Su Y W, Ren G. Current situation of carbon dioxide recovery and utilization in China [J]. Resour. Economizat. Environ. Prot., 2010: 72
苏元伟, 任 刚. 我国二氧化碳回收和利用现状 [J]. 资源节约与环保, 2010: 72
6 Jia Q Y, Wang B, Wang Y, et al. Corrosion behavior of X65 pipeline steel at oil-water interface region in hyperbaric CO2 environment [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 230
贾巧燕, 王 贝, 王 赟 等. X65管线钢在油水两相界面处的CO2腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2020, 40: 230
doi: 10.11902/1005.4537.2019.056
7 Li K X, Song L F, Li X R. Effect of pH on electrochemical corrosion and stress corrosion behavior of X100 pipeline steel in CO2-3/HCO-3 solutions [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 779
李柯萱, 宋龙飞, 李晓荣. pH值对X100管线钢在CO2-3/HCO-3溶液中的电化学与应力腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 779
doi: 10.11902/1005.4537.2021.244
8 Chen Q G, Tang Q H, Qin Z J, et al. Corrosion behavior of hot-dip aluminum coating in “High temperature-salt deposited-CO2/O2” multi-degree coupling environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 569
陈庆国, 唐全宏, 秦振杰 等. “高温-结盐-CO2/O2”多因素耦合环境下热浸铝镀层腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 569
doi: 10.11902/1005.4537.2022.229
9 Chen C F, Lu M X, Zhao G X, et al. The EIS analysis of cathodic reactions during CO2 corrosion of N80 steel [J]. Acta Metall. Sin., 2003, 39: 94
陈长风, 路民旭, 赵国仙 等. N80油套管钢CO2腐蚀阴极过程电化学阻抗谱分析 [J]. 金属学报, 2003, 39: 94
10 Ma W L, Wang H X, Barker R, et al. Corrosion behaviour of X65 carbon steel under the intermittent oil/water wetting: A synergic effect of flow velocity and alternate immersion period [J]. Corros. Sci., 2021, 187: 109507
doi: 10.1016/j.corsci.2021.109507
11 Jasinski R J, Efird K D. Technical Note: Electrochemical corrosion measurements in crude oil [J]. Corrosion, 1987, 43: 476
doi: 10.5006/1.3583888
12 Wang Z M, Zhang J. Corrosion of multiphase flow pipelines: the impact of crude oil [J]. Corros. Rev., 2016, 34: 17
doi: 10.1515/corrrev-2015-0053
13 Seal S, Sapre K, Kale A, et al. Effect of multiphase flow on corrosion of C-steel in presence of inhibitor: a surface morphological and chemical study [J]. Corros. Sci., 2000, 42: 1623
doi: 10.1016/S0010-938X(00)00013-5
14 Wang Z M, Song G L, Wang J, et al. Fast evaluation of corrosion inhibitors used in oil/water mixed fluids [A]. Corrosion 2019 [C]. Nashville, 2019
15 Mazumder M A J, Al-Muallem H A, Ali S A. The effects of N-pendants and electron-rich amidine motifs in 2-(p-alkoxyphenyl)-2-imidazolines on mild steel corrosion in CO2-saturated 0.5 M NaCl [J]. Corros. Sci., 2015, 90: 54
doi: 10.1016/j.corsci.2014.09.014
16 Yoo S H, Kim Y W, Chung K, et al. Synthesis and corrosion inhibition behavior of imidazoline derivatives based on vegetable oil [J]. Corros. Sci., 2012, 59: 42
doi: 10.1016/j.corsci.2012.02.011
17 Zhang G F, Zhang W, Wang F S. Synthesis of tall oil-based hydroxyethyl imidazoline and study on its corrosion inhibition properties [J]. Mod. Chem. Ind., 2020, 40(6): 151
张高飞, 张 威, 王丰收. 妥尔油基羟乙基咪唑啉的合成及缓蚀性能研究 [J]. 现代化工, 2020, 40(6): 151
18 Foss M, Gulbrandsen E, Sjöblom J. Alteration of wettability of corroding carbon steel surface by carbon dioxide corrosion inhibitors—effect on carbon dioxide corrosion rate and contact angle [J]. Corrosion, 2008, 64: 905
doi: 10.5006/1.3294406
19 Zheng L X, Wang Z M, Song G L. Electrochemical characterization of an oil/water alternately wetted rotating cylinder electrode [J]. Corrosion, 2021, 77: 72
doi: 10.5006/3638
20 Ouyang J L, Wang X X, Wang Z M, et al. Molecular origin of the CO2-enhanced water wetting during corrosion of an oil layer-attached steel surface in water flows [J].Corrosion, 2023, 79(11): 1253
doi: 10.5006/4295
21 Yan J R. Synthesis of imidazoline inhibitor from vegetable oil and analysis of its inhibition performance [D]. Shaanxi University of Science & Technology, 2012
闫倩茹. 植物油制备咪唑啉类缓蚀剂及其缓蚀性能的分析研究 [D]. 西安: 陕西科技大学, 2012
22 Qi Z Y. Synthesis of oleic acid-imidazoline corrosion inhibitor and the effect of self-assembly method on its performance [D]. Beijing: China University of Petroleum, 2016
齐志远. 油酸基咪唑啉的合成及自组装方式对其缓蚀性能的影响 [D]. 北京: 中国石油大学, 2016
23 Chen G H. Study of the inhibition mechanism and synergistic effect of corrosion inhibitors in sweet system [D]. Beijing: Beijing University of Chemical Technology, 2012
陈国浩. 二氧化碳腐蚀体系缓蚀剂的缓蚀机理及缓蚀协同效应研究 [D]. 北京: 北京化工大学, 2012
24 Wang Z M, Lun Q Y, Wang J, et al. Corrosion mitigation behavior of an alternately wetted steel electrode in oil/water media [J]. Corros. Sci., 2019, 152: 140
doi: 10.1016/j.corsci.2019.03.008
25 Park C W, Lee I, Kwon S H, et al. Authentication of adulterated edible oil using coherent anti-Stokes Raman scattering spectroscopy [J]. J. Raman Spectrosc., 2017, 48: 1330
doi: 10.1002/jrs.v48.10
26 Larsson K, Rand R P. Detection of changes in the environment of hydrocarbon chains by Raman spectroscopy and its application to lipid-protein systems [J]. Biochim. Biophys. Acta, 1973, 326: 245
pmid: 4765102
27 Howell N K, Herman H, Li-Chan E C Y. Elucidation of protein-lipid interactions in a lysozyme-corn oil system by Fourier transform Raman spectroscopy [J]. J. Agric. Food Chem., 2001, 49: 1529
doi: 10.1021/jf001115p
28 Baumgartner M, Bakker R J. Raman spectroscopy of pure H2O and NaCl-H2O containing synthetic fluid inclusions in quartz—A study of polarization effects [J]. Mineral. Petrol., 2009, 95: 1
doi: 10.1007/s00710-008-0028-z
[1] PAN Xin, REN Ze, LIAN Jingbao, HE Chuan, ZHENG Ping, CHEN Xu. Effect of Heat Treatment Process on Corrosion Behavior of Super 13Cr Stainless Steel in CO2-Saturated Oilfield Formation Aqueous Solution[J]. 中国腐蚀与防护学报, 2022, 42(5): 752-758.
[2] MING Nanxi, WANG Qishan, HE Chuan, ZHENG Ping, CHEN Xu. Effect of Temperature on Corrosion Behavior of X70 Steel in an Artificial CO2-containing Formation Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 233-240.
[3] BAI Haitao, YANG Min, DONG Xiaowei, MA Yun, WANG Rui. Research Progress on CO2 Corrosion Product Scales of Carbon Steels[J]. 中国腐蚀与防护学报, 2020, 40(4): 295-301.
[4] JIA Qiaoyan, WANG Bei, WANG Yun, ZHANG Lei, WANG Qing, YAO Haiyuan, LI Qingping, LU Minxu. Corrosion Behavior of X65 Pipeline Steel at Oil-Water Interface Region in Hyperbaric CO2 Environment[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[5] YI Hongwei, HU Huihui, CHEN Changfeng, JIA Xiaolan, HU Lihua. Corrosion Behavior and Corrosion Inhibition of Dissimilar Metal Welds for X65 Steel in CO2-containing Environment[J]. 中国腐蚀与防护学报, 2020, 40(2): 96-104.
[6] Jianguo LIU,Ge GAO,Yazhou XU,Zili LI,Wanran JI. Corrosion Inhibition Performance of Imidazoline Derivatives[J]. 中国腐蚀与防护学报, 2018, 38(6): 523-532.
[7] Shuaihao HAN,Hongyu CEN,Zhenyu CHEN,Yubing QIU,Xingpeng GUO. Inhibition Behavior of Imidazoline Inhibitor in Corrosive Medium Containing Crude Oil and High-Pressure CO2[J]. 中国腐蚀与防护学报, 2017, 37(3): 221-226.
[8] Hongwei LIU,Fuping XIONG,Yalin LV,Chengxuan GE,Hongfang LIU,Yulong HU. CO2 Corrosion Inhibition of Carbon Steel by Dodecylamine under Flow Conditions[J]. 中国腐蚀与防护学报, 2016, 36(6): 645-651.
[9] ZHAO Tong, ZHAO Jingmao, JIANG Ruijing. Effect of Flow Velocity and Carbon Chain Length on Corrosion Inhibition Performance of Imidazoline Derivates in High Pressure CO2 Environment[J]. 中国腐蚀与防护学报, 2015, 35(2): 163-168.
[10] ZHAO Jingmao,CHEN Guohao. Synergistic Inhibition Mechanism of Imidazoline and Thiourea in CO2 Corrosive System[J]. 中国腐蚀与防护学报, 2013, 33(3): 226-230.
[11] LIU Yu,LI Yan. Research Progress of CO2 Corrosion of Internal Gas Pipeline Steel[J]. 中国腐蚀与防护学报, 2013, 33(1): 1-9.
[12] ZHAO Jingmao, LI Jun. GEMINI SURFACTANTS CONTAINING HYDROXYL GROUP AS CORROSION INHIBITORS FOR Q235 STEEL IN BRINE SOLUTION SATURATED BY CO2[J]. 中国腐蚀与防护学报, 2012, 32(4): 349-352.
[13] HOU Zan, ZHOU Qingjun, WANG Qijiang, ZHANG Zhonghua, QI Huibin, WANG Jun. INVESTIGATION ON CARBON DIOXIDE CORROSION PERFORMANCE OF VARIOUS 13Cr STEELS IN SIMULATED STRATUM WATER[J]. 中国腐蚀与防护学报, 2012, 32(4): 300-305.
[14] AI Junzhe, MEI Ping, GUO Xingpeng. ADSORPTION BEHAVIOR OF IMIDAZOLINE INHIBITOR ON CARBON STEEL IN CO2 SATURATED NaCl SOLUTION[J]. 中国腐蚀与防护学报, 2011, 31(4): 305-308.
[15] WANG Bin; ZHANG Jing; DU Min. INHIBITION PERFORMANCE OF IMIDAZOLINE INHIBITORS FOR Q235-A STEEL IN THE SIMULATED PRODUCING WELL WATER SATURATED WITH CO2[J]. 中国腐蚀与防护学报, 2010, 30(1): 16-20.
No Suggested Reading articles found!