|
|
Inhibition of Imidazolines on CO2 Induced Corrosion of Carbon Steel in Oil and Water Alternatively Wetting Conditions |
OUYANG Jialu1, WANG Xixi1, HAN Xia2, WANG Ziming1( ) |
1. Center for Marine Materials Corrosion and Protection, College of Materials, Xiamen University, Xiamen 361005, China 2. Sinopec Petroleum Engineering Design Co., Ltd., Dongying 257026, China |
|
Cite this article:
OUYANG Jialu, WANG Xixi, HAN Xia, WANG Ziming. Inhibition of Imidazolines on CO2 Induced Corrosion of Carbon Steel in Oil and Water Alternatively Wetting Conditions. Journal of Chinese Society for Corrosion and protection, 2024, 44(3): 707-715.
|
Abstract Corrosion inhibitor is the most commonly used for corrosion control in oil production, but the relevant inhibition mechanism in complex CO2 containing multiphase flow environment is still unclear. The effect of two typical oil-soluble and water-soluble imidazoline inhibitors on CO2 induced corrosion of carbon steel in oil and water alternatively wetting conditions was investigated. It was found that the corrosion inhibition effect of the water-soluble imidazoline was better than that of the oil-soluble imidazoline, and the difference was mainly attributed to the performance of interface oil/water. The oil-soluble imidazoline molecules can improve the inhibition effect by enhancing the self-repair on the oil phase side, while the water-soluble imidazoline molecules can effectively inhibit the generation and growth of water droplets at the interface oil/water, weaken the rupture of CO2 to the oil layer, and enhance the corrosion inhibition in dynamic wetting conditions.
|
Received: 01 July 2023
32134.14.1005.4537.2023.209
|
|
Fund: National Natural Science Foundation of China(52271075) |
Corresponding Authors:
WANG Ziming, E-mail: zmwang@xmu.edu.cn
|
1 |
Wang Z M, Song G L, Zhang J. Corrosion control in CO2 enhanced oil recovery from a perspective of multiphase fluids [J]. Front. Mater., 2019, 6: 272
doi: 10.3389/fmats.2019.00272
|
2 |
Ding W G, Xu D J, Zheng G H, et al. Research progress on application of carbon dioxide in energy development [J]. Modern Chem. Ind., 2023, 43(3): 13
|
|
丁文刚, 许冬进, 郑光洪 等. 二氧化碳在能源开发应用中的研究进展 [J]. 现代化工, 2023, 43(3): 13
|
3 |
Zhang Z L, Lü G Z, Wang J. CCUS and its application in Shengli Oilfield [J]. Petrol. Reserv. Evaluat. Dev., 2021, 11: 812
|
|
张宗檩, 吕广忠, 王 杰. 胜利油田CCUS技术及应用 [J]. 油气藏评价与开发, 2021, 11: 812
|
4 |
Lei Y J. Suggesting to conduct large-scale CCUS demonstration and industrial cluster construction [J]. Environ. Econ., 2021, (16): 40
|
|
雷英杰. 中国二氧化碳捕集利用与封存(CCUS)年度报告(2021)发布 建议开展大规模CCUS示范与产业化集群建设 [J]. 环境经济, 2021, (16): 40
|
5 |
Su Y W, Ren G. Current situation of carbon dioxide recovery and utilization in China [J]. Resour. Economizat. Environ. Prot., 2010: 72
|
|
苏元伟, 任 刚. 我国二氧化碳回收和利用现状 [J]. 资源节约与环保, 2010: 72
|
6 |
Jia Q Y, Wang B, Wang Y, et al. Corrosion behavior of X65 pipeline steel at oil-water interface region in hyperbaric CO2 environment [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 230
|
|
贾巧燕, 王 贝, 王 赟 等. X65管线钢在油水两相界面处的CO2腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2020, 40: 230
doi: 10.11902/1005.4537.2019.056
|
7 |
Li K X, Song L F, Li X R. Effect of pH on electrochemical corrosion and stress corrosion behavior of X100 pipeline steel in CO2-3/HCO-3 solutions [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 779
|
|
李柯萱, 宋龙飞, 李晓荣. pH值对X100管线钢在CO2-3/HCO-3溶液中的电化学与应力腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 779
doi: 10.11902/1005.4537.2021.244
|
8 |
Chen Q G, Tang Q H, Qin Z J, et al. Corrosion behavior of hot-dip aluminum coating in “High temperature-salt deposited-CO2/O2” multi-degree coupling environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 569
|
|
陈庆国, 唐全宏, 秦振杰 等. “高温-结盐-CO2/O2”多因素耦合环境下热浸铝镀层腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2023, 43: 569
doi: 10.11902/1005.4537.2022.229
|
9 |
Chen C F, Lu M X, Zhao G X, et al. The EIS analysis of cathodic reactions during CO2 corrosion of N80 steel [J]. Acta Metall. Sin., 2003, 39: 94
|
|
陈长风, 路民旭, 赵国仙 等. N80油套管钢CO2腐蚀阴极过程电化学阻抗谱分析 [J]. 金属学报, 2003, 39: 94
|
10 |
Ma W L, Wang H X, Barker R, et al. Corrosion behaviour of X65 carbon steel under the intermittent oil/water wetting: A synergic effect of flow velocity and alternate immersion period [J]. Corros. Sci., 2021, 187: 109507
doi: 10.1016/j.corsci.2021.109507
|
11 |
Jasinski R J, Efird K D. Technical Note: Electrochemical corrosion measurements in crude oil [J]. Corrosion, 1987, 43: 476
doi: 10.5006/1.3583888
|
12 |
Wang Z M, Zhang J. Corrosion of multiphase flow pipelines: the impact of crude oil [J]. Corros. Rev., 2016, 34: 17
doi: 10.1515/corrrev-2015-0053
|
13 |
Seal S, Sapre K, Kale A, et al. Effect of multiphase flow on corrosion of C-steel in presence of inhibitor: a surface morphological and chemical study [J]. Corros. Sci., 2000, 42: 1623
doi: 10.1016/S0010-938X(00)00013-5
|
14 |
Wang Z M, Song G L, Wang J, et al. Fast evaluation of corrosion inhibitors used in oil/water mixed fluids [A]. Corrosion 2019 [C]. Nashville, 2019
|
15 |
Mazumder M A J, Al-Muallem H A, Ali S A. The effects of N-pendants and electron-rich amidine motifs in 2-(p-alkoxyphenyl)-2-imidazolines on mild steel corrosion in CO2-saturated 0.5 M NaCl [J]. Corros. Sci., 2015, 90: 54
doi: 10.1016/j.corsci.2014.09.014
|
16 |
Yoo S H, Kim Y W, Chung K, et al. Synthesis and corrosion inhibition behavior of imidazoline derivatives based on vegetable oil [J]. Corros. Sci., 2012, 59: 42
doi: 10.1016/j.corsci.2012.02.011
|
17 |
Zhang G F, Zhang W, Wang F S. Synthesis of tall oil-based hydroxyethyl imidazoline and study on its corrosion inhibition properties [J]. Mod. Chem. Ind., 2020, 40(6): 151
|
|
张高飞, 张 威, 王丰收. 妥尔油基羟乙基咪唑啉的合成及缓蚀性能研究 [J]. 现代化工, 2020, 40(6): 151
|
18 |
Foss M, Gulbrandsen E, Sjöblom J. Alteration of wettability of corroding carbon steel surface by carbon dioxide corrosion inhibitors—effect on carbon dioxide corrosion rate and contact angle [J]. Corrosion, 2008, 64: 905
doi: 10.5006/1.3294406
|
19 |
Zheng L X, Wang Z M, Song G L. Electrochemical characterization of an oil/water alternately wetted rotating cylinder electrode [J]. Corrosion, 2021, 77: 72
doi: 10.5006/3638
|
20 |
Ouyang J L, Wang X X, Wang Z M, et al. Molecular origin of the CO2-enhanced water wetting during corrosion of an oil layer-attached steel surface in water flows [J].Corrosion, 2023, 79(11): 1253
doi: 10.5006/4295
|
21 |
Yan J R. Synthesis of imidazoline inhibitor from vegetable oil and analysis of its inhibition performance [D]. Shaanxi University of Science & Technology, 2012
|
|
闫倩茹. 植物油制备咪唑啉类缓蚀剂及其缓蚀性能的分析研究 [D]. 西安: 陕西科技大学, 2012
|
22 |
Qi Z Y. Synthesis of oleic acid-imidazoline corrosion inhibitor and the effect of self-assembly method on its performance [D]. Beijing: China University of Petroleum, 2016
|
|
齐志远. 油酸基咪唑啉的合成及自组装方式对其缓蚀性能的影响 [D]. 北京: 中国石油大学, 2016
|
23 |
Chen G H. Study of the inhibition mechanism and synergistic effect of corrosion inhibitors in sweet system [D]. Beijing: Beijing University of Chemical Technology, 2012
|
|
陈国浩. 二氧化碳腐蚀体系缓蚀剂的缓蚀机理及缓蚀协同效应研究 [D]. 北京: 北京化工大学, 2012
|
24 |
Wang Z M, Lun Q Y, Wang J, et al. Corrosion mitigation behavior of an alternately wetted steel electrode in oil/water media [J]. Corros. Sci., 2019, 152: 140
doi: 10.1016/j.corsci.2019.03.008
|
25 |
Park C W, Lee I, Kwon S H, et al. Authentication of adulterated edible oil using coherent anti-Stokes Raman scattering spectroscopy [J]. J. Raman Spectrosc., 2017, 48: 1330
doi: 10.1002/jrs.v48.10
|
26 |
Larsson K, Rand R P. Detection of changes in the environment of hydrocarbon chains by Raman spectroscopy and its application to lipid-protein systems [J]. Biochim. Biophys. Acta, 1973, 326: 245
pmid: 4765102
|
27 |
Howell N K, Herman H, Li-Chan E C Y. Elucidation of protein-lipid interactions in a lysozyme-corn oil system by Fourier transform Raman spectroscopy [J]. J. Agric. Food Chem., 2001, 49: 1529
doi: 10.1021/jf001115p
|
28 |
Baumgartner M, Bakker R J. Raman spectroscopy of pure H2O and NaCl-H2O containing synthetic fluid inclusions in quartz—A study of polarization effects [J]. Mineral. Petrol., 2009, 95: 1
doi: 10.1007/s00710-008-0028-z
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|