Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (3): 623-634    DOI: 10.11902/1005.4537.2023.221
Current Issue | Archive | Adv Search |
Hot Corrosion Behavior of Inconel 718 Without and With Aluminide Coating in Air Beneath a Thin Film of Salt Mixture of Na2SO4 + 5%NaCl
HU Qi1, GENG Shujiang1(), WANG Jinlong1, WANG Fuhui1, SUN Qingyun2, WU Yong2, XIA Siyao2
1. Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
2. China Academy of Machinery Wuhan Research Institute of Materials Protection Co., Ltd., Wuhan 430030, China
Cite this article: 

HU Qi, GENG Shujiang, WANG Jinlong, WANG Fuhui, SUN Qingyun, WU Yong, XIA Siyao. Hot Corrosion Behavior of Inconel 718 Without and With Aluminide Coating in Air Beneath a Thin Film of Salt Mixture of Na2SO4 + 5%NaCl. Journal of Chinese Society for Corrosion and protection, 2024, 44(3): 623-634.

Download:  HTML  PDF(20711KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Aluminide coating was prepared on Inconel 718 superalloy by chemical vapor deposition (CVD). The hot corrosion behavior of Inconel 718 without and with aluminide coating beneath a thin film of salt mixture of Na2SO4 (95%) + NaCl (5%) in air at 750, 850 and 950oC was studied respectively. The results indicate that Inconel 718 alloy shows poor corrosion resistance, and the higher the temperature, the more serious the corrosion. In the early stage of hot corrosion, the surface corrosion products are mainly composed of Cr2O3 and Fe2O3. As the corrosion time increases, spinel oxide becomes the main corrosion products. In addition, the scale on Inconel 718 alloy formed at 850 and 950oC is loose and porous, while cracking and peeling were observed. For the aluminide coated alloy, it performs well with enhanced corrosion resistance, while an Al2O3 scale is formed on the coating surface during corrosion. Although the coating underwent significant degradation with the increasing corrosion temperature and/or corrosion time. Besides, the formed corrosion scale is not tightly boned to the coating, while the defects such as cracks or voids are observed. Even so, the coating can still protect the substrate effectively to a great extent.

Key words:  Inconel 718      CVD aluminide coating      Na2SO4 + 5%NaCl      hot corrosion     
Received:  13 July 2023      32134.14.1005.4537.2023.221
ZTFLH:  TG174  
Fund: National Key R&D Program of China(2020YFB2010400);Hubei Provincial Key Research and Development Program of China(2021BAA210)
Corresponding Authors:  GENG Shujiang, Email: gengsj@smm.neu.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.221     OR     https://www.jcscp.org/EN/Y2024/V44/I3/623

Fig.1  Surface morphology of as-deposited coating (a), EDS results of the rectangle area 1 and point 1 marked in Fig.1a (b), cross-sectional morphology with corresponding line-scanning results (c), and XRD pattern (d)
Fig.2  Mass change curves of Inconel 718 alloy and CVD aluminide coating deposited with Na2SO4 + 5%NaCl during hot corrosion for 50 h in air at 750, 850 and 950℃
Fig.3  Surface morphologies of Inconel 718 alloy (a, c, e) and CVD aluminide coating (b, d, f) deposited with Na2SO4 + 5%NaCl after 1 h hot corrosion at 750oC (a, b), 850oC (c, d) and 950oC (e, f)
PositionOAlCrFeNiNbMoTiS
A72.29-26.180.510.500.20-0.130.19
B15.9040.051.234.5538.27----
C64.531.2213.065.4412.032.02-1.100.57
D22.3737.841.173.6135.01----
E78.870.379.350.780.814.280.155.39-
F63.430.8025.173.253.861.72-1.77-
G47.1230.923.123.6415.20----
Table 1  EDS analysis results of the different regions marked in Fig.3
Fig.4  Cross-sectional morphologies of Inconel 718 alloy (a, c, e) and CVD aluminide coating (b, d, f) after 1 h corrosion in Na2SO4 + 5%NaCl mixed salt at 750oC (a, b), 850oC (c, d) and 950oC (e, f)
Fig.5  XRD patterns of Inconel 718 alloy (a) and CVD aluminide coating (b) after 1 h corrosion at different temperatures
Fig.6  Surface morphologies of Inconel 718 alloy (a, c, e) and CVD aluminide coating (b, d, f) after 50 h corrosion in Na2SO4 + 5%NaCl mixed salt at 750oC (a, b), 850oC (c, d) and 950oC (e, f)
PositionOAlCrFeNiNbMoTiS
H63.112.098.2314.603.935.23-2.81-
I53.44-3.8032.4010.36----
J71.791.520.7719.166.76----
K56.0030.341.351.289.63---1.40
L66.9925.772.280.451.18---3.33
M68.180.9925.210.492.351.620.130.780.25
N8.990.622.5117.0365.130.624.99-0.11
O67.0319.292.823.277.29--0.250.05
P58.1638.091.560.610.98--0.330.27
Q63.210.545.0117.4012.281.00-0.56-
R55.6738.814.080.440.57-0.410.02
S67.0628.451.930.911.45----
Table 2  EDS analysis results of the different regions marked in Fig.6
Fig.7  Cross-sectional morphologies of Inconel 718 alloy (a, c, e) and CVD aluminide coating (b, d, f) after 50 h corrosion in Na2SO4 + 5%NaCl mixed salt at 750oC (a, b), 850oC (c, d) and 950oC (e, f)
Fig.8  XRD patterns of Inconel 718 alloy (a) and CVD aluminide coating (b) after 50 h corrosion at different temperatures
Fig.9  Ellingham-Richardson diagram of oxidation reactions of main alloying elements
Fig.10  Simplified eutectic phase diagram of Na2SO4-NaCl system
Fig.11  Ellingham-Richardson diagram of the reactions between main alloying elements and molten Na2SO4
Fig.12  Ellingham-Richardson diagram of the reactions between main alloying elements and molten NaCl
1 Fan X L, Li D J, Lv B W, et al. Advances in the fundamentals of the manufacture of industrial gas turbine [J]. China Basic Sci., 2018, 20(2): 32
范学领, 李定骏, 吕伯文 等. 国之重器, 十载砥砺——重型燃气轮机制造基础研究进展 [J]. 中国基础科学, 2018, 20(2): 32
2 Yang H B, Wang Y S, Wang X, et al. Research progress of hot corrosion and protection technology of gas turbine under marine environment [J]. Surf. Technol., 2020, 49(1): 163
杨宏波, 王源升, 王 轩 等. 燃气轮机在海洋环境下的热腐蚀与防护技术研究进展 [J]. 表面技术, 2020, 49(1): 163
3 Zielińska M, Yavorska M, Poręba M, et al. Thermal properties of cast nickel based superalloys [J]. Arch. Mater. Sci. Eng., 2010, 44: 35
4 Li M S. High Temperature Corrosion of Metal [M]. Beijing: Metallurgical Industry Press, 2001
李美栓. 金属的高温腐蚀 [M]. 北京: 冶金工业出版社, 2001
5 Yang Z L, Hu L M. Process to coat internal cooling passages of turbine blades [J]. J. Mater. Eng., 1996, 24(12): 39
杨忠林, 胡立明. 空心叶片内孔道防护工艺的研究 [J]. 材料工程, 1996, 24(12): 39
6 Kosieniak E, Biesiada K, Kaczorowski J, et al. Corrosion failures in gas turbine hot components [J]. J. Fail. Anal. Prev., 2012, 12: 330
doi: 10.1007/s11668-012-9571-3
7 Ziegler D, Puccinelli M, Bergallo B, et al. Investigation of turbine blade failure in a thermal power plant [J]. Case Stud. Eng. Fail. Anal., 2013, 1: 192
8 Pettit F. Hot corrosion of metals and alloys [J]. Oxid. Met., 2011, 76: 1
doi: 10.1007/s11085-011-9254-6
9 Mazur Z, Hernandez-Rossette A, Garcia-Illescas R, et al. Failure analysis of a gas turbine nozzle [J]. Eng. Fail. Anal., 2008, 15: 913
doi: 10.1016/j.engfailanal.2007.10.009
10 Wu D L, Zhang H Y, Wei H, et al. Hot corrosion behaviors of four coatings on Ni-based superalloy [J]. Res. Mater. Sci., 2014, 3(2): 30
吴多利, 张洪宇, 韦 华 等. 镍基高温合金表面四种涂层热腐蚀性能的研究 [J]. 材料科学研究, 2014, 3(2): 30
11 Jiang C Y, Feng M, Chen M H, et al. Corrosion behaviour of iron and nickel aluminide coatings under the synergistic effect of NaCl and water vapour [J]. Corros. Sci., 2021, 187: 109484
doi: 10.1016/j.corsci.2021.109484
12 Kanesund J, Brodin H, Johansson S. Hot corrosion influence on deformation and damage mechanisms in turbine blades made of IN-792 during service [J]. Eng. Fail. Anal., 2019, 96: 118
doi: 10.1016/j.engfailanal.2018.10.004
13 Yu X, Song P, He X, et al. Influence of the combined-effect of NaCl and Na2SO4 on the hot corrosion behaviour of aluminide coating on Ni-based alloys [J]. J. Alloy. Compd., 2019, 790: 228
doi: 10.1016/j.jallcom.2019.03.165
14 Yang S S, Yang L L, Chen M H, et al. Understanding of failure mechanisms of the oxide scales formed on nanocrystalline coatings with different Al content during cyclic oxidation [J]. Acta Mater., 2021, 205: 116576
doi: 10.1016/j.actamat.2020.116576
15 Smith A B, Kempster A, Smith J. Vapour aluminide coating of internal cooling channels, in turbine blades and vanes [J]. Surf. Coat. Technol., 1999, 120/121: 112
16 Romanowska J. Aluminum diffusion in aluminide coatings deposited by the CVD method on pure nickel [J]. Calphad, 2014, 44: 114
doi: 10.1016/j.calphad.2013.09.003
17 Dun Y Z, Wu Y, Zhang L. Research progress of application of CVD method in preparation of modified aluminide coating on nickel base superalloy [J]. Heat Treat. Met., 2018, 43(3): 145
顿易章, 吴 勇, 张 磊. CVD法在镍基高温合金表面制备改性铝化物涂层的研究进展 [J]. 金属热处理, 2018, 43(3): 145
18 Eliaz N, Shemesh G, Latanision R M. Hot corrosion in gas turbine components [J]. Eng. Fail. Anal., 2002, 9: 31
doi: 10.1016/S1350-6307(00)00035-2
19 Cheng J, Wu Y P, Shen W, et al. A study on hot corrosion performance of high velocity arc-sprayed FeCrNiAlMnB/Cr3C2 coating exposed to Na2SO4 + K2SO4 and Na2SO4 + NaCl [J]. Surf. Coat. Technol., 2020, 397: 126015
doi: 10.1016/j.surfcoat.2020.126015
20 Luo K Y, Li S H, Xu G, et al. Hot corrosion behaviors of directed energy deposited Inconel 718/Haynes 25 functionally graded material at 700oC and 900oC [J]. Corros. Sci., 2022, 197: 110040
doi: 10.1016/j.corsci.2021.110040
21 Aung N N, Liu X B. Effect of SO2 in flue gas on coal ash hot corrosion of Inconel 740 alloy-A high temperature electrochemical sensor study [J]. Corros. Sci., 2013, 76: 390
doi: 10.1016/j.corsci.2013.07.012
22 Tsaur C C, Rock J C, Wang C J, et al. The hot corrosion of 310 stainless steel with pre-coated NaCl/Na2SO4 mixtures at 750oC [J]. Mater. Chem. Phys., 2005, 89: 445
doi: 10.1016/j.matchemphys.2004.10.002
23 Prescott R, Stott F H, Elliott P. Investigations of the degradation of high-temperature alloys in a potentially oxidizing-chloridizing gas mixture [J]. Oxid. Met., 1989, 31: 145
doi: 10.1007/BF00665491
24 Nielsen H P, Frandsen F J, Dam-Johansen K, et al. The implications of chlorine-associated corrosion on the operation of biomass-fired boilers [J]. Prog. Energy Combust. Sci., 2000, 26: 283
doi: 10.1016/S0360-1285(00)00003-4
25 Sui J X, Lehmusto J, Bergelin M, et al. Initial oxidation mechanisms of stainless steel Sanicro 28 (35Fe27Cr31Ni) exposed to KCl, NaCl, and K2CO3 under dry and humid conditions at 535oC [J]. Corros. Sci., 2019, 155: 29
doi: 10.1016/j.corsci.2019.04.010
26 Abu Kassim S, Thor J A, Abu Seman A, et al. High temperature corrosion of Hastelloy C22 in molten alkali salts: the effect of pre-oxidation treatment [J]. Corros. Sci., 2020, 173: 108761
doi: 10.1016/j.corsci.2020.108761
27 Mahobia G S, Paulose N, Singh V. Hot corrosion behavior of superalloy IN718 at 550 and 650oC [J]. J. Mater. Eng. Perform., 2013, 22: 2418
doi: 10.1007/s11665-013-0532-0
28 Holt A, Kofstad P. High temperature corrosion of iron in O2 + 4% SO2/SO3 at 500-800oC [J]. Mater. Sci. Eng., 1989, 120A/121A : 101
[1] WANG Hua, WANG Yingjie, LIU Enze. Hot Corrosion Behavior of New Type Co-Al-W Superalloys with Different Ni Contents[J]. 中国腐蚀与防护学报, 2023, 43(6): 1419-1426.
[2] QU Weiwei, CHEN Zehao, PEI Yanling, LI Shusuo, WANG Fuhui. Spreading and Corrosion Behavior of CMAS Melt on Different Materials for Thermal Barrier Coating[J]. 中国腐蚀与防护学报, 2023, 43(6): 1407-1412.
[3] SHANG Jin, GU Yan, ZHAO Jing, WANG Zhe, ZHANG Bo, ZHAO Tongjun, CHEN Zehao, WANG Jinlong. Corrosion Behavior in Molten Salts at 850 ℃ and Its Effect on Mechanical Properties of Hastelloy X Alloy Fabricated by Additive Manufacturing[J]. 中国腐蚀与防护学报, 2023, 43(3): 671-676.
[4] SHEN Jubao, CUI Yu, LIU Li, LIU Rui, MENG Fandi, WANG Fuhui. Cyclic Hot Corrosion Behavior of DZ40M and K452 Superalloys Beneath Molten Deposit NaCl[J]. 中国腐蚀与防护学报, 2023, 43(2): 280-288.
[5] HE Nankai, WANG Yongxin, ZHOU Shengguo, ZHOU Dapeng, LI Jinlong. Oxidation Behavior in Water Vapor and Tribological Property in Atmosphere with 60%Relative Humidity at 580 ℃ for Inconel 718 Alloy[J]. 中国腐蚀与防护学报, 2023, 43(2): 271-279.
[6] HU Yunyuan, QIAN Wei, HUA Yinqun, YE Yunxia, CAI Jie, DAI Fengze. Effect of Pre-corrosion of Gd2Zr2O7 at 900-1300 ℃ on Its Hot Corrosion Behavior at 1250 ℃ Beneath Deposites of CaO-MgO-Al2O3-SiO2[J]. 中国腐蚀与防护学报, 2022, 42(4): 687-692.
[7] WU Jiajie, WANG Yanli. Hot Corrosion and Protection of Structural Materials in Molten Salt Reactor[J]. 中国腐蚀与防护学报, 2022, 42(2): 193-199.
[8] YI Pu, HOU Lifeng, DU Huayun, LIU Xiaoda, JIA Jianwen, LI Yang, ZHANG Wei, XU Fanghong, WEI Yinghui. NaCl Induced Corrosion of Three Austenitic Stainless Steels at High Temperature[J]. 中国腐蚀与防护学报, 2022, 42(2): 288-294.
[9] XIONG Yi, LIU Guangming, ZHAN Fuyuan, MAO Xiaofei, LUO Qin, HONG Jia, NI Jinfei, LIU Yongqiang. Hot Corrosion and Failure Behavior of Three Thermal Spraying Coatings in Simulated Atmosphere/Coal Ash Environment[J]. 中国腐蚀与防护学报, 2021, 41(3): 369-375.
[10] JIANG Bochen, CAO Jiangdong, CAO Xueyu, WANG Jiantao, ZHANG Shaopeng. Hot Corrosion Behavior of Gd2(Zr1-xCex)2O7 Thermal Barrier Coating Ceramics Exposed to Artificial Particulates of CMAS[J]. 中国腐蚀与防护学报, 2021, 41(2): 263-270.
[11] CHEN Chao,LIANG Yanfen,LIANG Tianquan,MAN Quanyan,LUO Yidong,ZHANG Xiuhai,ZENG Jianmin. Research Progress on Hot Corrosion of Rare Earth Oxides Co-doped ZrO2 Ceramic Coatings in Molten Na2SO4+NaVO3 Salts[J]. 中国腐蚀与防护学报, 2019, 39(4): 291-298.
[12] Lijia YU,Wenping LIANG,Hao LIN,Qiang MIAO,Biaozi HUANG,Shiyu CUI. Evaluation of Hot Corrosion Behavior of Laser As-remelted YSZ Thermal Barrier Coatings at 950 ℃[J]. 中国腐蚀与防护学报, 2019, 39(1): 77-82.
[13] Hao CHEN,Qing CHEN,Li XIN,Long SHI,Shenglong ZHU,Fuhui WANG. Preparation and High Temperature Corrosion Behavior of Aluminized Nanocrystalline Coating on DD98M Alloy[J]. 中国腐蚀与防护学报, 2019, 39(1): 59-67.
[14] Xijing WANG, Boshi WANG, Chao YANG, Yan YANG, Bin SHEN. Hot Corrosion of Pure Nickel and Its Weld Joints in Molten Na2SO4-K2SO4 Salts[J]. 中国腐蚀与防护学报, 2018, 38(5): 495-501.
[15] Xizhong WANG,Jianhao WU,Hui PENG,Hongbo GUO,Shengkai GONG. Hot-gas Corrosion Resistance of La2Ce2O7/8YSZ Duble-ceramic-layered Thermal Barrier Coating[J]. 中国腐蚀与防护学报, 2017, 37(1): 36-40.
No Suggested Reading articles found!