|
|
Hot Corrosion Behavior of Inconel 718 Without and With Aluminide Coating in Air Beneath a Thin Film of Salt Mixture of Na2SO4 + 5%NaCl |
HU Qi1, GENG Shujiang1( ), WANG Jinlong1, WANG Fuhui1, SUN Qingyun2, WU Yong2, XIA Siyao2 |
1. Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China 2. China Academy of Machinery Wuhan Research Institute of Materials Protection Co., Ltd., Wuhan 430030, China |
|
Cite this article:
HU Qi, GENG Shujiang, WANG Jinlong, WANG Fuhui, SUN Qingyun, WU Yong, XIA Siyao. Hot Corrosion Behavior of Inconel 718 Without and With Aluminide Coating in Air Beneath a Thin Film of Salt Mixture of Na2SO4 + 5%NaCl. Journal of Chinese Society for Corrosion and protection, 2024, 44(3): 623-634.
|
Abstract Aluminide coating was prepared on Inconel 718 superalloy by chemical vapor deposition (CVD). The hot corrosion behavior of Inconel 718 without and with aluminide coating beneath a thin film of salt mixture of Na2SO4 (95%) + NaCl (5%) in air at 750, 850 and 950oC was studied respectively. The results indicate that Inconel 718 alloy shows poor corrosion resistance, and the higher the temperature, the more serious the corrosion. In the early stage of hot corrosion, the surface corrosion products are mainly composed of Cr2O3 and Fe2O3. As the corrosion time increases, spinel oxide becomes the main corrosion products. In addition, the scale on Inconel 718 alloy formed at 850 and 950oC is loose and porous, while cracking and peeling were observed. For the aluminide coated alloy, it performs well with enhanced corrosion resistance, while an Al2O3 scale is formed on the coating surface during corrosion. Although the coating underwent significant degradation with the increasing corrosion temperature and/or corrosion time. Besides, the formed corrosion scale is not tightly boned to the coating, while the defects such as cracks or voids are observed. Even so, the coating can still protect the substrate effectively to a great extent.
|
Received: 13 July 2023
32134.14.1005.4537.2023.221
|
|
Fund: National Key R&D Program of China(2020YFB2010400);Hubei Provincial Key Research and Development Program of China(2021BAA210) |
Corresponding Authors:
GENG Shujiang, Email: gengsj@smm.neu.edu.cn
|
1 |
Fan X L, Li D J, Lv B W, et al. Advances in the fundamentals of the manufacture of industrial gas turbine [J]. China Basic Sci., 2018, 20(2): 32
|
|
范学领, 李定骏, 吕伯文 等. 国之重器, 十载砥砺——重型燃气轮机制造基础研究进展 [J]. 中国基础科学, 2018, 20(2): 32
|
2 |
Yang H B, Wang Y S, Wang X, et al. Research progress of hot corrosion and protection technology of gas turbine under marine environment [J]. Surf. Technol., 2020, 49(1): 163
|
|
杨宏波, 王源升, 王 轩 等. 燃气轮机在海洋环境下的热腐蚀与防护技术研究进展 [J]. 表面技术, 2020, 49(1): 163
|
3 |
Zielińska M, Yavorska M, Poręba M, et al. Thermal properties of cast nickel based superalloys [J]. Arch. Mater. Sci. Eng., 2010, 44: 35
|
4 |
Li M S. High Temperature Corrosion of Metal [M]. Beijing: Metallurgical Industry Press, 2001
|
|
李美栓. 金属的高温腐蚀 [M]. 北京: 冶金工业出版社, 2001
|
5 |
Yang Z L, Hu L M. Process to coat internal cooling passages of turbine blades [J]. J. Mater. Eng., 1996, 24(12): 39
|
|
杨忠林, 胡立明. 空心叶片内孔道防护工艺的研究 [J]. 材料工程, 1996, 24(12): 39
|
6 |
Kosieniak E, Biesiada K, Kaczorowski J, et al. Corrosion failures in gas turbine hot components [J]. J. Fail. Anal. Prev., 2012, 12: 330
doi: 10.1007/s11668-012-9571-3
|
7 |
Ziegler D, Puccinelli M, Bergallo B, et al. Investigation of turbine blade failure in a thermal power plant [J]. Case Stud. Eng. Fail. Anal., 2013, 1: 192
|
8 |
Pettit F. Hot corrosion of metals and alloys [J]. Oxid. Met., 2011, 76: 1
doi: 10.1007/s11085-011-9254-6
|
9 |
Mazur Z, Hernandez-Rossette A, Garcia-Illescas R, et al. Failure analysis of a gas turbine nozzle [J]. Eng. Fail. Anal., 2008, 15: 913
doi: 10.1016/j.engfailanal.2007.10.009
|
10 |
Wu D L, Zhang H Y, Wei H, et al. Hot corrosion behaviors of four coatings on Ni-based superalloy [J]. Res. Mater. Sci., 2014, 3(2): 30
|
|
吴多利, 张洪宇, 韦 华 等. 镍基高温合金表面四种涂层热腐蚀性能的研究 [J]. 材料科学研究, 2014, 3(2): 30
|
11 |
Jiang C Y, Feng M, Chen M H, et al. Corrosion behaviour of iron and nickel aluminide coatings under the synergistic effect of NaCl and water vapour [J]. Corros. Sci., 2021, 187: 109484
doi: 10.1016/j.corsci.2021.109484
|
12 |
Kanesund J, Brodin H, Johansson S. Hot corrosion influence on deformation and damage mechanisms in turbine blades made of IN-792 during service [J]. Eng. Fail. Anal., 2019, 96: 118
doi: 10.1016/j.engfailanal.2018.10.004
|
13 |
Yu X, Song P, He X, et al. Influence of the combined-effect of NaCl and Na2SO4 on the hot corrosion behaviour of aluminide coating on Ni-based alloys [J]. J. Alloy. Compd., 2019, 790: 228
doi: 10.1016/j.jallcom.2019.03.165
|
14 |
Yang S S, Yang L L, Chen M H, et al. Understanding of failure mechanisms of the oxide scales formed on nanocrystalline coatings with different Al content during cyclic oxidation [J]. Acta Mater., 2021, 205: 116576
doi: 10.1016/j.actamat.2020.116576
|
15 |
Smith A B, Kempster A, Smith J. Vapour aluminide coating of internal cooling channels, in turbine blades and vanes [J]. Surf. Coat. Technol., 1999, 120/121: 112
|
16 |
Romanowska J. Aluminum diffusion in aluminide coatings deposited by the CVD method on pure nickel [J]. Calphad, 2014, 44: 114
doi: 10.1016/j.calphad.2013.09.003
|
17 |
Dun Y Z, Wu Y, Zhang L. Research progress of application of CVD method in preparation of modified aluminide coating on nickel base superalloy [J]. Heat Treat. Met., 2018, 43(3): 145
|
|
顿易章, 吴 勇, 张 磊. CVD法在镍基高温合金表面制备改性铝化物涂层的研究进展 [J]. 金属热处理, 2018, 43(3): 145
|
18 |
Eliaz N, Shemesh G, Latanision R M. Hot corrosion in gas turbine components [J]. Eng. Fail. Anal., 2002, 9: 31
doi: 10.1016/S1350-6307(00)00035-2
|
19 |
Cheng J, Wu Y P, Shen W, et al. A study on hot corrosion performance of high velocity arc-sprayed FeCrNiAlMnB/Cr3C2 coating exposed to Na2SO4 + K2SO4 and Na2SO4 + NaCl [J]. Surf. Coat. Technol., 2020, 397: 126015
doi: 10.1016/j.surfcoat.2020.126015
|
20 |
Luo K Y, Li S H, Xu G, et al. Hot corrosion behaviors of directed energy deposited Inconel 718/Haynes 25 functionally graded material at 700oC and 900oC [J]. Corros. Sci., 2022, 197: 110040
doi: 10.1016/j.corsci.2021.110040
|
21 |
Aung N N, Liu X B. Effect of SO2 in flue gas on coal ash hot corrosion of Inconel 740 alloy-A high temperature electrochemical sensor study [J]. Corros. Sci., 2013, 76: 390
doi: 10.1016/j.corsci.2013.07.012
|
22 |
Tsaur C C, Rock J C, Wang C J, et al. The hot corrosion of 310 stainless steel with pre-coated NaCl/Na2SO4 mixtures at 750oC [J]. Mater. Chem. Phys., 2005, 89: 445
doi: 10.1016/j.matchemphys.2004.10.002
|
23 |
Prescott R, Stott F H, Elliott P. Investigations of the degradation of high-temperature alloys in a potentially oxidizing-chloridizing gas mixture [J]. Oxid. Met., 1989, 31: 145
doi: 10.1007/BF00665491
|
24 |
Nielsen H P, Frandsen F J, Dam-Johansen K, et al. The implications of chlorine-associated corrosion on the operation of biomass-fired boilers [J]. Prog. Energy Combust. Sci., 2000, 26: 283
doi: 10.1016/S0360-1285(00)00003-4
|
25 |
Sui J X, Lehmusto J, Bergelin M, et al. Initial oxidation mechanisms of stainless steel Sanicro 28 (35Fe27Cr31Ni) exposed to KCl, NaCl, and K2CO3 under dry and humid conditions at 535oC [J]. Corros. Sci., 2019, 155: 29
doi: 10.1016/j.corsci.2019.04.010
|
26 |
Abu Kassim S, Thor J A, Abu Seman A, et al. High temperature corrosion of Hastelloy C22 in molten alkali salts: the effect of pre-oxidation treatment [J]. Corros. Sci., 2020, 173: 108761
doi: 10.1016/j.corsci.2020.108761
|
27 |
Mahobia G S, Paulose N, Singh V. Hot corrosion behavior of superalloy IN718 at 550 and 650oC [J]. J. Mater. Eng. Perform., 2013, 22: 2418
doi: 10.1007/s11665-013-0532-0
|
28 |
Holt A, Kofstad P. High temperature corrosion of iron in O2 + 4% SO2/SO3 at 500-800oC [J]. Mater. Sci. Eng., 1989, 120A/121A : 101
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|