Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (2): 323-334    DOI: 10.11902/1005.4537.2023.120
Current Issue | Archive | Adv Search |
Effect of Different Bias Voltages on Anti-corrosion Properties of Multi-arc Ion Plated Al-coatings on 45# Carbon Steel
SHI Chao1(), LI Jiahao1, WANG Rongxiang2, ZHANG Bo2, ZHOU Lanxin1, LIU Guangming1, SHAO Yawei3
1.Key Laboratory for Microstructural Control of Metallic Materials of Jiangxi Province, Nanchang Hang Kong University, Nanchang 330063, China
2.The 5th Electronics Research Institute of the Ministry of Industry and Information Technology, Guangzhou 510610, China
3.College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
Cite this article: 

SHI Chao, LI Jiahao, WANG Rongxiang, ZHANG Bo, ZHOU Lanxin, LIU Guangming, SHAO Yawei. Effect of Different Bias Voltages on Anti-corrosion Properties of Multi-arc Ion Plated Al-coatings on 45# Carbon Steel. Journal of Chinese Society for Corrosion and protection, 2024, 44(2): 323-334.

Download:  HTML  PDF(33718KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Al-coating is considered to be an ideal protective coating for steels. Multi-arc ion plating Al-coating is of significance for improving steel corrosion resistance, because multi-arc ion plating has advantages, such as non-toxicity, non-pollution, low-energy consumption, and easy operation etc. In this paper, multi-arc ion plated Al-coatings on 45# carbon steel were prepared by setting different bias parameters (0, -50, -100, -200, -300 V). Their surface and cross-section morphologies were characterized by scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy (EDS). The protective properties of the coatings prepared by different bias parameters were studied by electrochemical means, such as open circuit potential (OCP) measurement, electrochemical impedance spectroscopy (EIS), electrochemical polarization (EI) measurement and neutral salt spray test. The results showed that the number of pores and roughness of the Al-coatings decrease first then increase with the increasing bias voltages. Correspondingly, their OCPs, charge transfer resistances and free-corrosion current densities were stable between -0.72~-0.77 V, (1.50~2.98) × 104 Ω·cm2, and (1.18~5.49) × 10-6 A·cm-2, respectively. It is worthy noted that the corrosion resistance of the Al-coatings was obviously better than that of the bare 45# carbon steel. Being subjected to neutral salt spray test for 336 h, the Al-coatings still exhibit protective performance to certain extent because of cathodic protection mechanism, especially the Al-coating prepared by -200 V had excellent protective properties. In conclusion, the Al-coating, which was prepared by the following process parameters i.e., target current 55 A, Ar gas pressure 1.0 Pa, and bias voltage -200 V, is compact with better adhesive to the substrate thus exhibits the best protective performance.

Key words:  multi-arc ion plating      aluminized coating      corrosion resistance      electrochemical testing      salt spray test     
Received:  19 April 2023      32134.14.1005.4537.2023.120
ZTFLH:  TG156  
Fund: National Natural Science Foundation of China(52001155);Natural Science Foundation of Jiangxi Province(111236715013);Doctoral Scientific Research Foundation(EA201901056)
Corresponding Authors:  SHI Chao, E-mail: shichao@nchu.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.120     OR     https://www.jcscp.org/EN/Y2024/V44/I2/323

ParameterValue
Bias voltage / VExperimental value
Flow of Ar / m3·s-11.67 × 107
Arc current / A55
Deposition time / min30
Background pressure / Pa0.9~1.0
Chamber temperature / oC200
Table 1  Deposition parameters of Al coating
Fig.1  Surface macro-morphologies of 45# steel substrate (a) and aluminium coatings deposited under different bias-voltages: (b) 0 V, (c) -50 V, (d) -100 V, (e) -200 V, (f) -300 V
Fig.2  Microscopic morphologies of aluminium coatings deposited at different bias-voltages: (a) 0 V, (b) -50 V, (c) -100 V, (d) -200 V, (e) -300 V
Fig.3  Surface micro-morphologies (a1-e1, a2-e2) and EDS results (a3-e3) of aluminium coatings deposited at different bias-voltages: (a1-a3) 0 V, (b1-b3) -50 V, (c1-c3) -100 V, (d1-d3) -200 V, (e1-e3) -300 V
Fig.4  Cross-sectional morphologies (a1-e1, a2-e2) and EDS results (a3-e3) of aluminium coatings deposited on 45# carbon steel at 0 V (a1-a3), -50 V (b1-b3), -100 V (c1-c3), -200 V (d1-d3) and -300 V (e1-e3) bias-voltages
Fig.5  Dependence of surface roughness of aluminium coating on deposition bias-voltage
Fig.6  Open circuit potentials of 45# carbon steel substrate and aluminium coatings deposited at different bias-voltages (a), and enlarged view of the open circuit potential of the aluminium coatings (b)
Fig.7  Bode (a) and Nyquist (b) plots of aluminium coatings deposited at different bias-voltages
Fig.8  Equivalent circuit model for fitting impedance spectroscopies in Fig.7

Bias

V

Rs

Ω·cm2

Cdl

Ω·cm-2·S n

Rt

Ω·cm2

Chsq
Blank10.471.72 × 10-31.53 × 1032.40 × 10-3
07.1771.38 × 10-52.46 × 1042.12 × 10-2
-506.8051.30 × 10-52.03 × 1046.15 × 10-3
-1007.3091.49 × 10-52.29 × 1042.43 × 10-2
-2007.4121.31 × 10-52.98 × 1042.69 × 10-2
-3007.0231.56 × 10-51.50 × 1041.98 × 10-2
Table 2  Fitting parameters of EIS of aluminium coatings deposited under different bias-voltages
Fig.9  Electrochemical polarization curves of aluminium coatings deposited under different bias-voltages
Bias / VIcorr / A·cm-2
Blank1.19 × 10-5
05.49 × 10-6
-501.41 × 10-6
-1001.66 × 10-6
-2001.18 × 10-6
-3001.62 × 10-6
Table 3  Self-corrosion current densities of aluminium coatings deposited under different bias-voltages
Fig.10  Corrosion morphologies of 45# carbon steel (a1-e1) and aluminium coatings deposited at the bias-voltages of 0 V (a2-e2), -50 V (a3-e3), -100 V (a4-e4), -200 V (a5-e5) and -300 V (a6-e6) after neutral salt spray test for 2 h (a1-a6), 18 h (b1-b6), 48 h (c1-c6), 96 h (d1-d6) and 336 h (e1-e6)
Fig.11  Corrosion morphologies of aluminium coatings deposited at the bias-voltages of 0 V (a), -50 V (b), -100 V (c), -200 V (d) and -300 V (e) after neutral salt spray test for 336 h
Fig.12  Microscopic surface morphologies (a, b) and EDS results (c-e) of aluminium coating deposited at the bias-voltage of -200 V after 48 h neutral salt spray test
Fig.13  Microscopic surface morphologies (a-d) and EDS results (e-g) of aluminium coating deposited at the bias-voltage of 0 V after 336 h neutral salt spray test
Fig.14  Corrosion mechanism of AIP deposited aluminium coatings during corrosion at different stages: (a) initial stage, (b) intermediate stage, (c) later stage
1 Xia J M, Li Z Y, Wang X Q, et al. Study on erosion and corrosion behavior and protection of steel in flowing artificial seawater[J]. Surf. Technol., 2021, 50(11): 306
夏江敏, 李竹影, 王晓强 等. 钢在流动人造海水中的冲刷腐蚀行为与防护研究[J]. 表面技术, 2021, 50(11): 306
2 Jin L B, Liang X Y, Wang Z, et al. Research progress of carbon steel corrosion in seawater full lmmersion zone[J]. Corros. Prot., 2020, 41(10): 33
金立兵, 梁新亚, 王 珍 等. 碳钢在海水全浸区腐蚀的研究进展[J]. 腐蚀与防护, 2020, 41(10): 33
3 Hou M Y. Study on corrosion behavior of Q235 carbon steel in seawater environment[D]. Wuhan: Wuhan University of Technology, 2020
侯明宇. 海水环境下Q235碳钢的腐蚀行为研究[D]. 武汉: 武汉理工大学, 2020
4 Li X L. Study on multiprincipal CoCrNi coating on 45 steel surface by plasma cladding[D]. Tianjin: Tiangong University, 2021
李小龙. 45钢表面等离子熔覆多主元CoCrNi涂层的研究[D]. 天津: 天津工业大学, 2021
5 Tan Y S, Rong X W, Han H. Comparison of properties of Ni-Co-P coating and Ni-W-P coating prepared by electroless plating on surface of 45 steel rod-shaped parts[J]. Plat. Finish., 2020, 42(9): 1
谭宇硕, 容旭巍, 韩 瀚. 45钢杆件化学镀Ni-Co-P及Ni-W-P镀层的性能比较[J]. 电镀与精饰, 2020, 42(9): 1
6 Lin X L, Wang Y B, Xin Y C, et al. Localized electrochemical corrosion behavior of the interface of hot-dip galvanized coating[J]. Surf. Technol., 2022, 51(9): 217
林学亮, 王友彬, 辛延琛 等. 热浸镀锌层界面的微区电化学腐蚀行为[J]. 表面技术, 2022, 51(9): 217
7 Li B. Study on replacement of Cd or Cd-Ti electroplating by metallic-ceramic anticorrosive coating[J]. Electroplat. Finish., 2021, 40(6): 410
李 博. 金属陶瓷防腐蚀涂层替代镀镉或镉-钛工艺的研究[J]. 电镀与涂饰, 2021, 40(6): 410
8 Wu X X. Study on the mechanism of hydrogen permeation in the process of cadmium electroplating in high strength steel[D]. Tianjin: Civil Aviation University of China, 2018
吴欣欣. 高强度钢电镀镉过程中渗氢机理研究[D]. 天津: 中国民航大学, 2018
9 Maki J. Corrosion behavior of aluminized steel sheets in 50-year outdoor exposure test[J]. ISIJ Int., 2019, 59(10): 1870
doi: 10.2355/isijinternational.ISIJINT-2019-017
10 Zhan Z W, Sun Z H, Tang Z H, et al. Comparison study on performance of IVD and ILEp aluminum coatings[J]. Equip. Environ. Eng., 2017, 14(5): 74
詹中伟, 孙志华, 汤智慧 等. 离子镀铝与离子液体电镀铝涂层性能对比研究[J]. 装备环境工程, 2017, 14(5): 74
11 Ding Y H. Research on aluminum plating technology by ion vapor deposition[J]. Plat. Finish., 2016, 38(12): 6
丁艳红. 离子气相沉积镀铝技术研究[J]. 电镀与精饰, 2016, 38(12): 6
12 Zhan Z W, Sun Z H, Peng C. Protective performance comparison of aluminium-based coatings on 300M steel surface[J]. Plat. Finish., 2015, 37(9): 1
詹中伟, 孙志华, 彭 超. 300M钢表面铝基涂层防护性能对比研究[J]. 电镀与精饰, 2015, 37(9): 1
13 Wang Y, Zhao X N, Dang X A, et al. Aluminizing steel surface for providing protection in marine environment: a technological review[J]. Mater. Rep., 2018, 32(21): 3805
王 瑶, 赵雪妮, 党新安 等. 海洋环境下钢材表面镀铝工艺的研究进展[J]. 材料导报, 2018, 32(21): 3805
14 Mei H F, Feng Z W, Liu Y, et al. Effect of hot-dip aluminizing on surface microstructure and high temperature oxidation resistance of 316L stainless steel[J]. Ordnance Mater. Sci. Eng., 2021, 44(5): 33
梅海峰, 冯志文, 刘 亚 等. 热浸镀铝对316L不锈钢表面组织和抗高温氧化性的影响[J]. 兵器材料科学与工程, 2021, 44(5): 33
15 Kainuma S, Yang M Y, Gao Y, et al. Long-term deterioration mechanism of hot-dip aluminum coating exposed to a coastal-atmospheric environment[J]. Constr. Build. Mater., 2021, 280: 122516
doi: 10.1016/j.conbuildmat.2021.122516
16 Romanowska J. Aluminum diffusion in aluminide coatings deposited by the CVD method on pure nickel[J]. Calphad, 2014, 44: 114
doi: 10.1016/j.calphad.2013.09.003
17 Zhang L, Wu Y, Dun Y Z, et al. Preparation of aluminide coating on hollow-blade inner-cavity by CVD method[J]. Heat Treat. Met., 2019, 44(5): 124
张 磊, 吴 勇, 顿易章 等. 采用CVD法制备空心叶片内腔铝化物涂层[J]. 金属热处理, 2019, 44(5): 124
18 Huang J Y, Zhong Q, Huang H G, et al. Structure analysis of aluminized coatings on P92 steel prepared by pack cementation aluminizing and vapor aluminizing[J]. Therm. Power Gener., 2020, 49(3): 124
黄锦阳, 钟 强, 黄浩刚 等. P92耐热钢粉末包埋渗铝与化学气相渗铝涂层组织结构研究[J]. 热力发电, 2020, 49(3): 124
19 Li W, Huang H, Huang W Y, et al. Research progress on surface state and element diffusion mechanism of steel with surface coating prepared by pack aluminizing method[J]. China Surf. Eng., 2021, 34(3): 25
李 微, 黄 煌, 黄伟颖 等. 钢表面粉末包埋渗铝的表面状态及元素扩散机理研究进展[J]. 中国表面工程, 2021, 34(3): 25
20 Kitada A, Nakamura K, Fukami K, et al. Electrochemically active species in aluminum electrodeposition baths of AlCl3/glyme solutions[J]. Electrochim. Acta, 2016, 211: 561
doi: 10.1016/j.electacta.2016.05.063
21 Hou Y Y, Li R Q, Liang J, et al. Electropolishing of Al and Al alloys in AlCl3/trimethylamine hydrochloride ionic liquid[J]. Surf. Coat. Technol., 2018, 335: 72
doi: 10.1016/j.surfcoat.2017.12.028
22 Zhang X M, Zhang J L, Yu Y C, et al. Effect of deposition time on corrosion resistance of Al-coated AZ31 magnesium alloy[J]. Surf. Technol., 2019, 48(10): 251
张晓敏, 张金玲, 于彦冲 等. 沉积时间对镀铝层AZ31镁合金耐蚀性的影响[J]. 表面技术, 2019, 48(10): 251
23 Sun Z H, Liu M, Zhang X Y, et al. Corrosion property at marine atmosphere of Al based coatings replacing Cd on high strength steels[J]. Equip. Environ. Eng., 2017, 14(12): 71
孙志华, 刘 明, 张晓云 等. 高强度钢代镉铝基涂层耐海洋环境腐蚀性能评价[J]. 装备环境工程, 2017, 14(12): 71
24 Yang H Y, Wei T G, Zhang R Q, et al. Effect of arc ion plating technological parameters on the deposition and properties of Cr coatings[J]. Mater. Prot., 2021, 54(12): 97
杨红艳, 韦天国, 张瑞谦 等. 电弧离子镀工艺参数对Cr涂层沉积及性能的影响[J]. 材料保护, 2021, 54(12): 97
25 Song Z H, Dai M J, Li H, et al. Effect of arc ion plating bias on structure and properties of TiAlSiN films[J]. Surf. Technol., 2020, 49(9): 306
宋智辉, 代明江, 李 洪 等. 电弧离子镀偏压对TiAlSiN涂层结构及性能的影响[J]. 表面技术, 2020, 49(9): 306
26 Feng C J, Hu X, Jiang Y F. Effect of bias voltage on the properties of TiAlN coating by shielded arc ion plating[J]. J. Nanchang Hangkong Univ. (Nat. Sci.), 2013, 27(2): 63
冯长杰, 胡 弦, 江鸢飞. 偏压对挡板电弧离子镀TiAlN涂层性能的影响[J]. 南昌航空大学学报(自然科学版), 2013, 27(2): 63
27 Huang R M, Dai M J, Lin S S, et al. Preparation and properties of CrN film by arc ion plating[J]. Heat Treat. Met., 2017, 42(10): 164
黄儒明, 代明江, 林松盛 等. 电弧离子镀CrN薄膜的制备及性能研究[J]. 金属热处理, 2017, 42(10): 164
28 Dong C C, Wang H R, Huang G S, et al. Corrosion behavior of cold-sprayed aluminum coating in seawater[J]. Corros. Sci. Prot. Technol., 2010, 22(2): 90
董彩常, 王洪仁, 黄国胜 等. 冷喷涂铝涂层在海水中的腐蚀行为研究[J]. 腐蚀科学与防护技术, 2010, 22(2): 90
29 Chen H L, Li X J, Wei Y. Corrosion mechanism of carbon steel in chloride solution[J]. Corros. Prot., 2007, 28(1): 17
陈惠玲, 李晓娟, 魏 雨. 碳钢在含氯离子环境中腐蚀机理的研究[J]. 腐蚀与防护, 2007, 28(1): 17
[1] LIU Guoqiang, ZHANG Dongfang, CHEN Haoxiang, FAN Zhihong, XIONG Jianbo, WU Qingfa. Electrochemical Corrosion Behavior of 2304 Duplex Stainless Steel in a Simulated Pore Solution in Reinforced Concrete Serving in Marine Environment[J]. 中国腐蚀与防护学报, 2024, 44(1): 204-212.
[2] XIE Yun, LIU Ting, WANG Wen, ZHOU Jialin, TANG Song. Effect of Microstructure on Corrosion Resistance of a High-strength Ultralightweight Mg-Li Alloy[J]. 中国腐蚀与防护学报, 2024, 44(1): 255-260.
[3] SUN Shuo, DAI Jiaming, SONG Yingwei, AI Caijiao. Corrosion Behavior of Extruded EW75 Mg-alloy in Shenyang Industrial Atmosphere[J]. 中国腐蚀与防护学报, 2024, 44(1): 141-150.
[4] SHANG Ting, JIANG Guangrui, LIU Guanghui, QIN Hancheng. Effect of Heat Treatment Process on Microstructure and Corrosion Resistance of Zn-6%Al-3%Mg Coating[J]. 中国腐蚀与防护学报, 2023, 43(6): 1413-1418.
[5] WANG Xiao, LI Ming, LIU Feng, WANG Zhongping, LI Xiangbo, LI Ningwang. Effect of Temperature on Erosion-corrosion Behavior of B10 Cu-Ni Alloy Pipe[J]. 中国腐蚀与防护学报, 2023, 43(6): 1329-1338.
[6] XIAO Wentao, LIU Jing, PENG Jingjing, ZHANG Xian, WU Kaiming. Corrosion Resistance of Two Arc Spraying Coatings on EH36 Steel in Neutral Salt Spray Environment[J]. 中国腐蚀与防护学报, 2023, 43(5): 1003-1014.
[7] YANG Haifeng, YUAN Zhizhong, LI Jian, ZHOU Naipeng, GAO Feng. Effect of Ni Content on Corrosion Behavior of Cu-bearing Aged Weldable Steels in a Simulated Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2023, 43(5): 1022-1030.
[8] CHEN Xiaohan, BAI Yang, WANG Zhichao, CHEN Congzong, ZHANG Yong, CUI Xianlin, ZUO Juanjuan, WANG Tongliang. Preparation and Corrosion Resistance of Surface Tolerant Epoxy Anti-corrosion Primer[J]. 中国腐蚀与防护学报, 2023, 43(5): 1126-1132.
[9] LIU Chao, CHEN Tianqi, LI Xiaogang. Research Progress on Initiation Mechanism of Local Corrosion Induced by Inclusions in Low Alloy Steel[J]. 中国腐蚀与防护学报, 2023, 43(4): 746-754.
[10] ZOU Wenjie, DING Li, ZHANG Xuejiao, CHEN Jun. Epoxy/Organosiloxane Modified Cationic Acrylic Emulsion Composite Coating[J]. 中国腐蚀与防护学报, 2023, 43(4): 922-928.
[11] XIAO Meng, WANG Qinying, ZHANG Xingshou, XI Yuchen, BAI Shulin, DONG Lijin, ZHANG Jin, YANG Junjie. Effect of Laser Quenching on Microstructure, Corrosion and Wear Behavior of AISI 4130 Steel[J]. 中国腐蚀与防护学报, 2023, 43(4): 713-724.
[12] WU Duoli, WU Haotian, SUN Hui, SHI Jianjun, WEI Xinlong, ZHANG Chao. Research Status and Development of Laser Cladding High Temperature Protective Coating[J]. 中国腐蚀与防护学报, 2023, 43(4): 725-736.
[13] WU Jiahao, WU Liang, YAO Wenhui, YUAN Yuan, XIE Zhihui, WANG Jingfeng, PAN Fusheng. Properties of Layered Dihydroxyl Metal (MgAlLa) Oxide Composite Coatings on Different Micro-arc Oxidation Surfaces of Mg-Gd-Y-Zn-Mn Alloy[J]. 中国腐蚀与防护学报, 2023, 43(4): 693-703.
[14] NI Ya, SHI Fangchang, QI Jiqiu. Effect of Ce on Microstructure and Corrosion Resistance of Zn-0.6Cu-0.3Ti Alloy[J]. 中国腐蚀与防护学报, 2023, 43(4): 803-811.
[15] HU Qian, GAO Jiayi, GUO Ruisheng, SHI Junqin, WANG Xianzong. Long-term Corrosion of Lubricant Infused Surface with Micro-nano Structures on Anodized Aluminum Oxide[J]. 中国腐蚀与防护学报, 2023, 43(4): 773-780.
No Suggested Reading articles found!