|
|
Research Status and Development of Laser Cladding High Temperature Protective Coating |
WU Duoli1, WU Haotian1, SUN Hui2( ), SHI Jianjun3, WEI Xinlong1, ZHANG Chao1( ) |
1.College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China 2.School of Space Science and Physics, Shandong University, Weihai 264209, China 3.Industrial Center, Nanjing Institute of Technology, Nanjing 211167, China |
|
|
Abstract In aerospace, automobile, power generation and other industrial fields, many crucial hot end components such as aviation engine, automobile engine, coal (oil, gas) boiler and turbine blades, valve components, superheater tube etc. are servicing in high temperature-, high pressure-, corrosion-environments for a long time, thus which suffered easily from surface oxidation- or corrosion-damages. The preparation of high temperature protective coating on the surface of those parts is an important technical means to improve their service performance. The mechanical bonding strength of the coating prepared by thermal spraying is not high, and the coating is usually porous. Under the condition of high temperature, corrosion is easy to occur through pores, and even penetrate the coating onto the matrix, which is not conducive to the high temperature corrosion protection of the workpiece. Laser cladding technology is an advanced and rapidly developing surface modification technology, which can make a very strong metallurgical combination for the cladding materials with the matrix, but also has the advantages of coatings with high compactness, low dilution rate, and environmentally friendly etc. This paper first summarizes the research status and achievements of high-temperature protective coatings for hot-end components in industries such as aerospace, automotive, and power generation. Secondly, it analyzes the types of defects that may occur during laser cladding for coating preparation and the cause for their formation. Finally, it points out the difficulties and challenges faced by the future development of laser cladding technology and prospects for its development direction and trend.
|
Received: 01 May 2023
32134.14.1005.4537.2023.160
|
|
Fund: National Natural Science Foundation of China(52101100);National Natural Science Foundation of China(62004117);General Project of Natural Science Research in Colleges and Universities of Jiangsu Province(21KJB430008);Qing Lan Project of Yangzhou University(2022);Cooperation Project between Yangzhou City and Yangzhou University(YZ2021153);National Key Research and Development Program(2022YFB3706600) |
Corresponding Authors:
SUN Hui, E-mail: huisun@sdu.edu.cn;ZHANG Chao, E-mail: zhangc@yzu.edu.cn
|
1 |
Huebner J, Kata D, Kusiński J, et al. Microstructure of laser cladded carbide reinforced Inconel 625 alloy for turbine blade application [J]. Ceram. Int., 2017, 43: 8677
doi: 10.1016/j.ceramint.2017.03.194
|
2 |
Bu R, Jin A X, Sun Q, et al. Study on laser cladding and properties of AZ63-Er alloy for automobile engine [J]. J. Mater. Res. Technol., 2020, 9: 5154
doi: 10.1016/j.jmrt.2020.03.032
|
3 |
Wang Y F, Zhao X Y, Lu W J, et al. Microstructure and properties of high speed laser cladding stainless steel coating on sucker rod coupling surface [J]. Chin. J. Lasers, 2021, 48(6): 0602114
|
|
王彦芳, 赵晓宇, 陆文俊 等. 抽油杆接箍表面高速激光熔覆不锈钢涂层的组织与性能 [J]. 中国激光, 2021, 48(6): 0602114
|
4 |
Singh A, Sharma V, Mittal S, et al. An overview of problems and solutions for components subjected to fireside of boilers [J]. Int. J. Ind. Chem., 2018, 9: 1
doi: 10.1007/s40090-017-0133-0
|
5 |
Chen Y, Zhang K H, Wen M, et al. Investigation status and development of high-temperature coating [J]. Precious Met., 2013, 34(S1): 108
|
|
陈 勇, 张昆华, 闻 明 等. 高温涂层发展与研究现状 [J]. 贵金属, 2013, 34(S1): 108
|
6 |
Huang Y C, Zhang J Q. Modern materials corrosion and protection [M]. Shanghai: Shanghai Jiaotong University Press, 2012: 13
|
|
黄永昌, 张建旗. 现代材料腐蚀与防护 [M]. 上海: 上海交通大学出版社, 2012: 13
|
7 |
Zhang J C, Shi S H, Gong Y Q, et al. Research progress in laser cladding technology [J]. Surf. Technol., 2020, 49(10): 1
|
|
张津超, 石世宏, 龚燕琪 等. 激光熔覆技术研究进展 [J]. 表面技术, 2020, 49(10): 1
|
8 |
Yang N, Yang F. Development and application of laser cladding technology [J]. Hot Work. Technol., 2011, 40(8): 118
|
|
杨 宁, 杨 帆. 激光熔覆技术的发展现状及应用 [J]. 热加工工艺, 2011, 40(8): 118
|
9 |
Zhu L D, Xue P S, Lan Q, et al. Recent research and development status of laser cladding: a review [J]. Opt. Laser Technol., 2021, 138: 106915
doi: 10.1016/j.optlastec.2021.106915
|
10 |
Liu C M, Li C G, Zhang Z, et al. Modeling of thermal behavior and microstructure evolution during laser cladding of AlSi10Mg alloys [J]. Opt. Laser Technol., 2020, 123: 105926
doi: 10.1016/j.optlastec.2019.105926
|
11 |
Wang Y, Zhou X F. Research front and trend of specific laser additive manufacturing techniques [J]. Laser Technol., 2021, 45: 475
|
|
王 勇, 周雪峰. 激光增材制造研究前沿与发展趋势 [J]. 激光技术, 2021, 45: 475
|
12 |
Chen J, Yan F X. The selection of thermal protection materials based on laser cladding technology [J]. Mater. Rep., 2018, 32(S2): 322
|
|
陈 晶, 颜飞雪. 基于激光熔覆技术的热防护材料选择 [J]. 材料导报, 2018, 32(S2): 322
|
13 |
Yu C T, Yang Y F, Bao Z B, et al. Research progress in preparation and development of excellent bond coats for advanced thermal barrier coatings [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 395
|
|
余春堂, 阳颖飞, 鲍泽斌 等. 先进高温热障涂层用高性能粘接层制备及研究进展 [J]. 中国腐蚀与防护学报, 2019, 39: 395
doi: 10.11902/1005.4537.2019.154
|
14 |
Shang J, Gu Y, Zhao J, et al. Corrosion behavior in molten salts at 850 °C and its effect on mechanical properties of Hastelloy X alloy fabricated by additive manufacturing [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 671
|
|
尚 进, 古 岩, 赵 京 等. 增材制造Hastelloy X合金在850 ℃混合硫酸盐中热腐蚀行为及其对力学性能的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 671
|
15 |
Li W H, Wen X J, Li X H, et al. Application and development trend of aero-engine blade remanufacturing technology [J]. Diamond Abrasives Eng., 2021, 41(4): 8
|
|
李文辉, 温学杰, 李秀红 等. 航空发动机叶片再制造技术的应用及其发展趋势 [J]. 金刚石与磨料磨具工程, 2021, 41(4): 8
|
16 |
Xu J, Zhou J Y, Ren W B, et al. Inconel 718 coating process for laser remanufacturing three-dimensional forming of K418 blades [J]. Laser Optoelectron. Prog., 2020, 57(3): 132
|
|
徐 杰, 周金宇, 任维彬 等. Inconel 718覆层工艺用于K418叶片激光再制造立体成形 [J]. 激光与光电子学进展, 2020, 57(3): 132
|
17 |
Xu X Y, Cao Y, Wang H, et al. Experimental research on mechanical properties of the blade transition zone by laser cladding repair process [J]. Mod. Manuf. Eng., 2021, (9): 118
|
|
徐翔宇, 曹 阳, 王 辉 等. 激光熔覆修复叶片的过渡区力学性能试验研究 [J]. 现代制造工程, 2021, (9): 118
|
18 |
Cao Y, Farouk N, Taheri M, et al. Evolution of solidification and microstructure in laser-clad IN625 superalloy powder on GTD-111 superalloy [J]. Surf. Coat. Technol., 2021, 412: 127010
doi: 10.1016/j.surfcoat.2021.127010
|
19 |
Khorram A, Jamaloei A D, Jafari A, et al. Microstructural evolution of laser-clad 75Cr3C2+25(80Ni20Cr) powder on Inconel 718 superalloy [J]. J. Mater. Process. Technol., 2020, 284: 116735
doi: 10.1016/j.jmatprotec.2020.116735
|
20 |
Ansari M, Shoja-Razavi R, Barekat M, et al. High-temperature oxidation behavior of laser-aided additively manufactured NiCrAlY coating [J]. Corros. Sci., 2017, 118: 168
doi: 10.1016/j.corsci.2017.02.001
|
21 |
Tan C L, Weng F, Sui S, et al. Progress and perspectives in laser additive manufacturing of key aeroengine materials [J]. Int. J. Mach. Tools Manuf., 2021, 170: 103804
doi: 10.1016/j.ijmachtools.2021.103804
|
22 |
Yadav S, Paul C P, Jinoop A N, et al. Laser directed energy deposition based additive manufacturing of copper: process development and material characterizations [J]. J. Manuf. Process., 2020, 58: 984
doi: 10.1016/j.jmapro.2020.09.008
|
23 |
Li Y, Liang X Y, Yu Y F, et al. Review on additive manufacturing of single-crystal nickel-based Superalloys [J]. Chin. J. Mech. Eng. Addit. Manuf. Front., 2022, 1: 100019
|
24 |
Zhou Z P, Huang L, Shang Y J, et al. Causes analysis on cracks in nickel-based single crystal superalloy fabricated by laser powder deposition additive manufacturing [J]. Mater. Des., 2018, 160: 1238
doi: 10.1016/j.matdes.2018.10.042
|
25 |
Lu N N, Lei Z L, Hu K, et al. Hot cracking behavior and mechanism of a third-generation Ni-based single-crystal superalloy during directed energy deposition [J]. Addit. Manuf., 2020, 34: 101228
|
26 |
Arif Z U, Khalid M Y, Rehman E U, et al. A review on laser cladding of high-entropy alloys, their recent trends and potential applications [J]. J. Manuf. Process., 2021, 68: 225
doi: 10.1016/j.jmapro.2021.06.041
|
27 |
Pei S B, Wan D Y, Zhou P, et al. Research progress on preparation, microstructure, oxidation- and corrosion-resistance of high-entropy alloy coatings [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 873
|
|
裴书博, 万冬阳, 周 萍 等. 高熵涂层的制备工艺、组织结构和抗氧化腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 873
doi: 10.11902/1005.4537.2021.249
|
28 |
Tang L P, Liu H X, Li X F. Effects of B4C on microstructure and properties of laser cladding coating for automobile cylinder [J]. Hot Work. Technol., 2016, 45(14): 124
|
|
唐利平, 刘海雄, 李雪丰. B4C对汽车缸套激光熔覆修复涂层组织与性能的影响 [J]. 热加工工艺, 2016, 45(14): 124
|
29 |
Tong W H, Zhao Z L, Zhang X Y, et al. Microstructure and properties of TiC/Co-based alloy by laser cladding on the surface of nodular graphite cast iron [J]. Acta Metall. Sin., 2017, 53: 472
|
|
童文辉, 赵子龙, 张新元 等. 球墨铸铁表面激光熔覆TiC/钴基合金组织和性能研究 [J]. 金属学报, 2017, 53: 472
doi: 10.11900/0412.1961.2016.00288
|
30 |
Wang Q M. Study on laser cladding coating on automobile engine valve surface [D]. Jinan: University of Jinan, 2021
|
|
王启蒙. 汽车发动机气门表面激光熔覆涂层研究 [D]. 济南: 济南大学, 2021
|
31 |
Liu J. Study on strengthening technology of laser cladding Ni-based WC cladding on the surface of valve steel [D]. Qingdao: Qingdao University of Technology, 2021
|
|
刘 佳. 气阀钢表面激光熔覆Ni基WC熔覆层的强化工艺研究 [D]. 青岛: 青岛理工大学, 2021
|
32 |
Xu Y, Li C, Jia T H, et al. Numerical simulation and experimental research on the laser cladding process of QT600 nodular iron [J]. Surf. Technol., 2022, 51(7): 377
|
|
许 彦, 李 昌, 贾腾辉 等. QT600球墨铸铁激光熔覆数值模拟与实验研究 [J]. 表面技术, 2022, 51(7): 377
|
33 |
Chen J, Pu X X, Zhang J B, et al. Laser repair of turbine disc of a locomotive internal combustion engine turbocharger [J]. China Surf. Eng., 2014, 27(2): 110
|
|
陈 江, 朴新欣, 张静波 等. 机车内燃机涡轮增压器涡轮盘的激光修复 [J]. 中国表面工程, 2014, 27(2): 110
|
34 |
Jin Y P. Study on Influencing factors of laser cladding repair of K418 superalloy blade [D]. Beijing: Beijing University of Technology, 2017
|
|
靳延鹏. K418高温合金叶片激光熔覆修复的影响因素研究 [D]. 北京: 北京工业大学, 2017
|
35 |
Xu S M, Sun W H, Wu W J. Application and prospect of laser cladding technology in auto remanufacturing field [J]. Hot Work. Technol., 2017, 46(22): 33
|
|
徐素明, 孙维汉, 武文娟. 激光熔覆技术在汽车再制造领域的应用及前景 [J]. 热加工工艺, 2017, 46(22): 33
|
36 |
Qu Z P, Zhang B B, Xie G X, et al. Research progress on protection technology for waste incinerator heating surfaces [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 452
|
|
曲作鹏, 张贝贝, 谢广校 等. 垃圾焚烧炉受热面防护技术的研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 452
doi: 10.11902/1005.4537.2022.237
|
37 |
Guan Y, Liu G M, Zhang M Q, et al. High temperature corrosion behavior of Sanicro 25 steel in high-sulfur coal ash/simulated flue gas [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 681
|
|
官宇, 刘光明, 张民强 等. Sanicro 25钢在高硫煤灰/模拟烟气中的高温腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 681
doi: 10.11902/1005.4537.2021.155
|
38 |
Wang Y T, Zhao Y F, Wei X T, et al. High temperature chlorine corrosion of nickel based alloy coating for piping of waste incineration power plant [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 879
|
|
王永田, 赵祎璠, 魏啸天 等. 垃圾焚烧电站水冷壁镍基合金涂层高温氯腐蚀性能研究 [J]. 中国腐蚀与防护学报, 2022, 42: 879
doi: 10.11902/1005.4537.2021.279
|
39 |
Yang Y X. Study on microstructure and hot corrosion performance of laser cladding FeCrAlSi coating on 316 stainless steel [D]. Taiyuan: North University of China, 2021
|
|
杨宜鑫. 316不锈钢表面激光熔覆FeCrAlSi涂层的组织及热腐蚀性能研究 [D]. 太原: 中北大学, 2021
|
40 |
Zhang K, Huang C, Xiong J Z, et al. High-temperature corrosion resistance of laser cladding NiCrMo alloy coating on 15CrMo steel tube surface for waste incinerator [J]. Mater. Mech. Eng., 2021, 45(11): 29
|
|
张昆, 黄灿, 熊嘉政 等. 垃圾焚烧炉15CrMo钢管表面激光熔覆NiCrMo合金涂层的耐高温腐蚀性能 [J]. 机械工程材料, 2021, 45(11): 29
doi: 10.11973/jxgccl202111006
|
41 |
Han C Y, Sun Y N, Xu Y F, et al. Research on wear and electrochemical corrosion properties of laser cladding nickel base alloy [J]. Surf. Technol., 2021, 50(11): 103
|
|
韩晨阳, 孙耀宁, 徐一飞 等. 激光熔覆镍基合金磨损及电化学腐蚀性能研究 [J]. 表面技术, 2021, 50(11): 103
|
42 |
Li X Z, Liu Z D, Li H C, et al. Investigations on the behavior of laser cladding Ni-Cr-Mo alloy coating on TP347H stainless steel tube in HCl rich environment [J]. Surf. Coat. Technol., 2013, 232: 627
doi: 10.1016/j.surfcoat.2013.06.048
|
43 |
Wang K L, Zang Q B, Wei X G, et al. Effect of La2O3 on corrosion resistance of laser clad Ni-based alloy coatings [J]. J. Chin. Soc. Corros. Prot., 1998, 18: 237
|
|
王昆林, 张庆波, 魏兴国 等. La2O3对镍基合金激光熔覆层耐蚀性的影响 [J]. 中国腐蚀与防护学报, 1998, 18: 237
|
44 |
Cheng R. Research of technology and properties of laser cladding on Ni/Al2O3-La2O3 surface of 38CrMoAl steel [D]. Nanchang: East China Jiaotong University, 2009
|
|
程锐. 38CrMoAl表面激光熔覆Ni/Al2O3-La2O3工艺与熔覆层性能研究 [D]. 南昌: 华东交通大学, 2009
|
45 |
Ye F X, Shao W X, Ye X C, et al. Microstructure and corrosion behavior of laser-cladding CeO2-doped Ni-based composite coatings on TC4 [J]. J. Chem., 2020, 2020: 8690428
|
46 |
Chen Z X, Zhou H M, Xu C X. Cladding crack in laser cladding: a review [J]. Laser Optoelectron. Progress, 2021, 58: 0700006
|
|
陈滋鑫, 周后明, 徐采星. 激光熔覆裂纹研究现状 [J]. 激光与光电子学进展, 2021, 58: 0700006
|
47 |
Hou S X, Zhao J K, Li Q, et al. Study on the influencing factors of laser cladding defects [J]. Mater. Rep., 2022, 36(S1): 388
|
|
侯锁霞, 赵江昆, 李强 等. 对激光熔覆形成缺陷的影响因素的探究 [J]. 材料导报, 2022, 36(S1): 388
|
48 |
Li G Q, Wang L F, Zhao L, et al. Research progress on crack problem of laser cladding layer [J]. Hot Work. Technol., 2021, 50(16): 13
|
|
李广琪, 王丽芳, 赵亮 等. 激光熔覆层裂纹问题的研究进展 [J]. 热加工工艺, 2021, 50(16): 13
|
49 |
Wang W, Sun W L, Zhou H N, et al. Study on crack formation mechanism and matching method of laser cladding nickel-based alloy coating [J]. Hot Work. Technol., 2022, 51(14): 83
|
|
王伟, 孙文磊, 周浩南 等. 激光熔覆镍基合金涂层裂纹形成机理及匹配方法的研究 [J]. 热加工工艺, 2022, 51(14): 83
|
50 |
Barr C, Sun D S, Easton M, et al. Influence of macrosegregation on solidification cracking in laser clad ultra-high strength steels [J]. Surf. Coat. Technol., 2018, 340: 126
doi: 10.1016/j.surfcoat.2018.02.052
|
51 |
Wang R, Wang Y L, Jiang F L, et al. Effect of substrate preheating on crack sensitivity of Al2O3-ZrO2 ceramic coating prepared by laser cladding [J]. Surf. Technol., 2022, 51(3): 342
|
|
王冉, 王玉玲, 姜芙林 等. 基体预热对激光熔覆制备Al2O3-ZrO2陶瓷涂层裂纹敏感性的影响 [J]. 表面技术, 2022, 51(3): 342
|
52 |
Ya W, Pathiraj B, Matthews D T A, et al. Cladding of Tribaloy T400 on steel substrates using a high power Nd:YAG laser [J]. Surf. Coat. Technol., 2018, 350: 323
doi: 10.1016/j.surfcoat.2018.06.069
|
53 |
Zhang M, Liu S S, Luo S X, et al. Effect of molybdenum on the high-temperature properties of TiC-TiB2 reinforced Fe-based composite laser cladding coatings [J]. J. Alloy. Compd., 2018, 742: 383
doi: 10.1016/j.jallcom.2018.01.275
|
54 |
Qi J B. Study on Ultrasonic assisted laser cladding of Ni60 coating [D]. Jinzhou: Liaoning University of Technology, 2021
|
|
靳继波. 超声辅助激光熔覆Ni60涂层工艺研究 [D]. 锦州: 辽宁工业大学, 2021
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|