Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (4): 725-736    DOI: 10.11902/1005.4537.2023.160
Current Issue | Archive | Adv Search |
Research Status and Development of Laser Cladding High Temperature Protective Coating
WU Duoli1, WU Haotian1, SUN Hui2(), SHI Jianjun3, WEI Xinlong1, ZHANG Chao1()
1.College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
2.School of Space Science and Physics, Shandong University, Weihai 264209, China
3.Industrial Center, Nanjing Institute of Technology, Nanjing 211167, China
Download:  HTML  PDF(1385KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In aerospace, automobile, power generation and other industrial fields, many crucial hot end components such as aviation engine, automobile engine, coal (oil, gas) boiler and turbine blades, valve components, superheater tube etc. are servicing in high temperature-, high pressure-, corrosion-environments for a long time, thus which suffered easily from surface oxidation- or corrosion-damages. The preparation of high temperature protective coating on the surface of those parts is an important technical means to improve their service performance. The mechanical bonding strength of the coating prepared by thermal spraying is not high, and the coating is usually porous. Under the condition of high temperature, corrosion is easy to occur through pores, and even penetrate the coating onto the matrix, which is not conducive to the high temperature corrosion protection of the workpiece. Laser cladding technology is an advanced and rapidly developing surface modification technology, which can make a very strong metallurgical combination for the cladding materials with the matrix, but also has the advantages of coatings with high compactness, low dilution rate, and environmentally friendly etc. This paper first summarizes the research status and achievements of high-temperature protective coatings for hot-end components in industries such as aerospace, automotive, and power generation. Secondly, it analyzes the types of defects that may occur during laser cladding for coating preparation and the cause for their formation. Finally, it points out the difficulties and challenges faced by the future development of laser cladding technology and prospects for its development direction and trend.

Key words:  laser cladding      high temperature protection      laser cladding crack      research status      corrosion resistance     
Received:  01 May 2023      32134.14.1005.4537.2023.160
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(52101100);National Natural Science Foundation of China(62004117);General Project of Natural Science Research in Colleges and Universities of Jiangsu Province(21KJB430008);Qing Lan Project of Yangzhou University(2022);Cooperation Project between Yangzhou City and Yangzhou University(YZ2021153);National Key Research and Development Program(2022YFB3706600)
Corresponding Authors:  SUN Hui, E-mail: huisun@sdu.edu.cn;ZHANG Chao, E-mail: zhangc@yzu.edu.cn   

Cite this article: 

WU Duoli, WU Haotian, SUN Hui, SHI Jianjun, WEI Xinlong, ZHANG Chao. Research Status and Development of Laser Cladding High Temperature Protective Coating. Journal of Chinese Society for Corrosion and protection, 2023, 43(4): 725-736.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.160     OR     https://www.jcscp.org/EN/Y2023/V43/I4/725

Fig.1  FE-SEM images of Cr3C2+Ni20Cr cladding coatings on Inconel 718 alloy at the laser frequencies of 12 Hz (a) and 20 Hz (b)[19]
Fig.2  Microstructures of 30%TiC/Co-based alloy laser cladding layer on ductile cast iron: (a) near surface, (b) middle zone, (c) combining zone, (d) HAZ[29]
Laser cladding mode (Preset or feed power)Equipment TypeComposition of Substrate (Sub) and powder material (Pow)Laser cladding parameters:laser power (P), Scanning velocity (V), Powder feed rate (R)

Cladding layer parameters:

Weld width (W), Weld height (H), Dilution rates (η)

Cladding layer phase compositionProperties of cladding layerApplication scenarios
Coaxial powder feeding

YLS-400

fiber laser

Sub: K418 alloy

Pow: Inconel 718

P: 1.2 kW

V: 300 mm/min

R: 25 g/min

W: 1.414 mm

H: 1.537 mm

η: 10.09%

Laves phase, γ" phase and MC type carbide were precipitated at the bottom of the cladding layer.Hot-corrosion resistant; Thermal shock resistantRepair of turbine blades of aeroengines

YLS-3000

fiber laser

Sub: K465 alloy

Pow: nickel-based alloy

P: 2.4 kW

V: 360 mm/min

R: 12 g/min

W: 2.86 mm

H: 0.72 mm

η: 0.27 mm

γ phase, γ' phase, granular carbide and chain carbide in the cladding layer.Hot-corrosion resistant
IPG-YLS-2000-TR fiber laser

Sub: IN718 alloy

Pow: 30%WC + Inconel 718

P: 1.5 kW

V: 450 mm/min

R: 12 g/min

η: 18.51%(Fe, Ni) solid solution phase, Fe3Ni2 phase, (Fe, Cr, Ni)C phase, Ni17W3 phase, WC ceramic particle phase, W2C phase, Fe4W2C phase and Cr4Ni15W phase in the cladding layer.High hardness; Wear resistant; Heat resistantSurface strengthening of turbine disc, combustion chamber and other components of aeroengine
CO2 laser machine

Sub: K438 alloy Pow: CoNiCrAlY+

25%Al2O3

P: 2.5 kW

V: 240 mm/min

R: 0.5 g/min

-There are α-Co phase, α-Al2O3 phase, NiO phase, Cr2O3 phase, γ-(Ni, Cr) phase, γ'-Ni3Al phase and (Co, Ni)(Al, Cr)2O4 phase in the cladding layer.High temperature oxidation resistant

FL-Dlight3-2000

semiconductor laser unit

Sub: 304 steel

Pow: Ni60AA

P: 2.5 kW

V: 240 mm/min

R: 18 g/min

W: 14.85 mm

H: 1.68 mm

η: 13.49%

γ-(Ni, Fe) solid solution phase, FeNi3 ductile phase and Cr23C6 carbide in the cladding layer.

High hardness;

Wear resistant;

Corrosion resistant

Surface strengthening and repair of automotive engine valve components

IPG

fiber laser

Sub: 2Cr25Ni20 steel Pow: Inconel 718

P: 1.4 kW

V: 600 mm/min

R: 1.8 r/min

-Precipitated phase of cladding layer is Laves phase and a small amount of carbide.

High hardness;

Wear resistant;

Surface strengthening of feed inlet rotating shaft in steel mill

LDF400-2000

Fiber coupled semiconductor laser

Sub: Inconel718 alloy

Pow:Inconel 939

P: 0.9 kW

V: 240 mm/min

R: 14 g/min

η: 24.2 %Physical phases in the cladding layer include γ phase matrix, MC type carbide and a small amount of γ' phase.High hardness; Corrosion resistantRepair of gas turbine blades
Coaxial powder feeding

LDF4000-100

semiconductor laser unit

Sub: 304 steel

Pow: NiCoCrAlY

P: 1.5 kW

V: 600 mm/min

R: 4.5 g/min

W: 3.6 mm

H: 0.4 mm

η: 57.4%

Phases in the cladding layer include γ/γ' phase, β phase and β-NiAl phase.Wear resistant; High temperature oxidation resistantCoating thermal protection of steam turbine hot components

LDF4000-100

semiconductor laser unit

Sub: 316 steel

Pow: FeCrAlSi

P: 1.6 kW

V: 420 mm/min

R: 5.4 g/min

W: 3.494 mm

H: 0.588 mm

η: 40.4%

Cladding layer consists of Fe-Cr solid solution phase and AlFe intermetallic compound.High hardness; Wear resistant; Hot-corrosion resistant;Surface modification of boiler pipe in power plant
Powder presetting

GS-TFL-6000

CO2 laser machine

Sub: TC6 alloy

Pow: Ti-Al-20Cr

P: 4.1 kW

V: 350 mm/min

η: <8%Cladding layer is mainly composed of matrix structure and a large amount of silver-white material without obvious segregation phenomenon.High temperature oxidation resistantRepair of aero-engine compressor disc and blade

LDF-4000-100

semiconductor laser unit

Sub: TC4 alloy

Pow: CoCrFeNi2V0.5Ti0.5

P: 0.8 kW

V: 300 mm/min

-Physical phases in the cladding layer include BCC phase, (Ni, Co)Ti2 phase and α-Ti enriched phase.

High hardness;

Wear resistant;

Surface modification of hot end components in aero-engines and automotive engines

Sub: TC4 alloy

Pow: CoCrFeNi2Mo0.5

P: 1 kW

V: 300 mm/min

Phases in the cladding layer include BCC phase, (Ni, Co)Ti2 phase, α-Ti phase and FeCrMo type σ phase.

Lasertel 8 kW

semiconductor laser unit

Sub: TC4 alloy

Pow: TC4+10%hBN

P: 4 kW

V: 900 mm/min

-Cladding layer consists of TiB phase and TiN phase distributed in α-Ti matrix

Sub: TC4 alloy

Pow: TC4+10%Ni/B4C

P: 4 kW

V: 480 mm/min

Cladding layer is composed of NiTi2 phase, dendritic phase, TiB phase, TiC phase, TiB2 and incomplete decomposed B4C embedded in α-Ti matrix.

GS-TEL-6000A

Multi-mode cross-flow CO2 laser

Sub: TC4 alloy Pow: AlMoNbTiV

P: 3.7 kW

V: 600 mm/min

-Cladding layer is mainly composed of BCC phase and a small amount of TiAl intermetallic compounds.High temperature oxidation resistant

LWS-1000

Nd: YAG laser

Sub: 304 steel Pow: FeCoCuAlNiNb0.5

P: 0.2 kW

V: 420 mm/min

η: 15%Phase in cladding layer includes BCC phase, FCC phase and Laves phase.

Wear resistant;

Corrosion resistant

Surface strengthening and repair of automotive engine valve components
Table 1  Application examples of high temperature protective coatings prepared by laser cladding
1 Huebner J, Kata D, Kusiński J, et al. Microstructure of laser cladded carbide reinforced Inconel 625 alloy for turbine blade application [J]. Ceram. Int., 2017, 43: 8677
doi: 10.1016/j.ceramint.2017.03.194
2 Bu R, Jin A X, Sun Q, et al. Study on laser cladding and properties of AZ63-Er alloy for automobile engine [J]. J. Mater. Res. Technol., 2020, 9: 5154
doi: 10.1016/j.jmrt.2020.03.032
3 Wang Y F, Zhao X Y, Lu W J, et al. Microstructure and properties of high speed laser cladding stainless steel coating on sucker rod coupling surface [J]. Chin. J. Lasers, 2021, 48(6): 0602114
王彦芳, 赵晓宇, 陆文俊 等. 抽油杆接箍表面高速激光熔覆不锈钢涂层的组织与性能 [J]. 中国激光, 2021, 48(6): 0602114
4 Singh A, Sharma V, Mittal S, et al. An overview of problems and solutions for components subjected to fireside of boilers [J]. Int. J. Ind. Chem., 2018, 9: 1
doi: 10.1007/s40090-017-0133-0
5 Chen Y, Zhang K H, Wen M, et al. Investigation status and development of high-temperature coating [J]. Precious Met., 2013, 34(S1): 108
陈 勇, 张昆华, 闻 明 等. 高温涂层发展与研究现状 [J]. 贵金属, 2013, 34(S1): 108
6 Huang Y C, Zhang J Q. Modern materials corrosion and protection [M]. Shanghai: Shanghai Jiaotong University Press, 2012: 13
黄永昌, 张建旗. 现代材料腐蚀与防护 [M]. 上海: 上海交通大学出版社, 2012: 13
7 Zhang J C, Shi S H, Gong Y Q, et al. Research progress in laser cladding technology [J]. Surf. Technol., 2020, 49(10): 1
张津超, 石世宏, 龚燕琪 等. 激光熔覆技术研究进展 [J]. 表面技术, 2020, 49(10): 1
8 Yang N, Yang F. Development and application of laser cladding technology [J]. Hot Work. Technol., 2011, 40(8): 118
杨 宁, 杨 帆. 激光熔覆技术的发展现状及应用 [J]. 热加工工艺, 2011, 40(8): 118
9 Zhu L D, Xue P S, Lan Q, et al. Recent research and development status of laser cladding: a review [J]. Opt. Laser Technol., 2021, 138: 106915
doi: 10.1016/j.optlastec.2021.106915
10 Liu C M, Li C G, Zhang Z, et al. Modeling of thermal behavior and microstructure evolution during laser cladding of AlSi10Mg alloys [J]. Opt. Laser Technol., 2020, 123: 105926
doi: 10.1016/j.optlastec.2019.105926
11 Wang Y, Zhou X F. Research front and trend of specific laser additive manufacturing techniques [J]. Laser Technol., 2021, 45: 475
王 勇, 周雪峰. 激光增材制造研究前沿与发展趋势 [J]. 激光技术, 2021, 45: 475
12 Chen J, Yan F X. The selection of thermal protection materials based on laser cladding technology [J]. Mater. Rep., 2018, 32(S2): 322
陈 晶, 颜飞雪. 基于激光熔覆技术的热防护材料选择 [J]. 材料导报, 2018, 32(S2): 322
13 Yu C T, Yang Y F, Bao Z B, et al. Research progress in preparation and development of excellent bond coats for advanced thermal barrier coatings [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 395
余春堂, 阳颖飞, 鲍泽斌 等. 先进高温热障涂层用高性能粘接层制备及研究进展 [J]. 中国腐蚀与防护学报, 2019, 39: 395
doi: 10.11902/1005.4537.2019.154
14 Shang J, Gu Y, Zhao J, et al. Corrosion behavior in molten salts at 850 °C and its effect on mechanical properties of Hastelloy X alloy fabricated by additive manufacturing [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 671
尚 进, 古 岩, 赵 京 等. 增材制造Hastelloy X合金在850 ℃混合硫酸盐中热腐蚀行为及其对力学性能的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 671
15 Li W H, Wen X J, Li X H, et al. Application and development trend of aero-engine blade remanufacturing technology [J]. Diamond Abrasives Eng., 2021, 41(4): 8
李文辉, 温学杰, 李秀红 等. 航空发动机叶片再制造技术的应用及其发展趋势 [J]. 金刚石与磨料磨具工程, 2021, 41(4): 8
16 Xu J, Zhou J Y, Ren W B, et al. Inconel 718 coating process for laser remanufacturing three-dimensional forming of K418 blades [J]. Laser Optoelectron. Prog., 2020, 57(3): 132
徐 杰, 周金宇, 任维彬 等. Inconel 718覆层工艺用于K418叶片激光再制造立体成形 [J]. 激光与光电子学进展, 2020, 57(3): 132
17 Xu X Y, Cao Y, Wang H, et al. Experimental research on mechanical properties of the blade transition zone by laser cladding repair process [J]. Mod. Manuf. Eng., 2021, (9): 118
徐翔宇, 曹 阳, 王 辉 等. 激光熔覆修复叶片的过渡区力学性能试验研究 [J]. 现代制造工程, 2021, (9): 118
18 Cao Y, Farouk N, Taheri M, et al. Evolution of solidification and microstructure in laser-clad IN625 superalloy powder on GTD-111 superalloy [J]. Surf. Coat. Technol., 2021, 412: 127010
doi: 10.1016/j.surfcoat.2021.127010
19 Khorram A, Jamaloei A D, Jafari A, et al. Microstructural evolution of laser-clad 75Cr3C2+25(80Ni20Cr) powder on Inconel 718 superalloy [J]. J. Mater. Process. Technol., 2020, 284: 116735
doi: 10.1016/j.jmatprotec.2020.116735
20 Ansari M, Shoja-Razavi R, Barekat M, et al. High-temperature oxidation behavior of laser-aided additively manufactured NiCrAlY coating [J]. Corros. Sci., 2017, 118: 168
doi: 10.1016/j.corsci.2017.02.001
21 Tan C L, Weng F, Sui S, et al. Progress and perspectives in laser additive manufacturing of key aeroengine materials [J]. Int. J. Mach. Tools Manuf., 2021, 170: 103804
doi: 10.1016/j.ijmachtools.2021.103804
22 Yadav S, Paul C P, Jinoop A N, et al. Laser directed energy deposition based additive manufacturing of copper: process development and material characterizations [J]. J. Manuf. Process., 2020, 58: 984
doi: 10.1016/j.jmapro.2020.09.008
23 Li Y, Liang X Y, Yu Y F, et al. Review on additive manufacturing of single-crystal nickel-based Superalloys [J]. Chin. J. Mech. Eng. Addit. Manuf. Front., 2022, 1: 100019
24 Zhou Z P, Huang L, Shang Y J, et al. Causes analysis on cracks in nickel-based single crystal superalloy fabricated by laser powder deposition additive manufacturing [J]. Mater. Des., 2018, 160: 1238
doi: 10.1016/j.matdes.2018.10.042
25 Lu N N, Lei Z L, Hu K, et al. Hot cracking behavior and mechanism of a third-generation Ni-based single-crystal superalloy during directed energy deposition [J]. Addit. Manuf., 2020, 34: 101228
26 Arif Z U, Khalid M Y, Rehman E U, et al. A review on laser cladding of high-entropy alloys, their recent trends and potential applications [J]. J. Manuf. Process., 2021, 68: 225
doi: 10.1016/j.jmapro.2021.06.041
27 Pei S B, Wan D Y, Zhou P, et al. Research progress on preparation, microstructure, oxidation- and corrosion-resistance of high-entropy alloy coatings [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 873
裴书博, 万冬阳, 周 萍 等. 高熵涂层的制备工艺、组织结构和抗氧化腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 873
doi: 10.11902/1005.4537.2021.249
28 Tang L P, Liu H X, Li X F. Effects of B4C on microstructure and properties of laser cladding coating for automobile cylinder [J]. Hot Work. Technol., 2016, 45(14): 124
唐利平, 刘海雄, 李雪丰. B4C对汽车缸套激光熔覆修复涂层组织与性能的影响 [J]. 热加工工艺, 2016, 45(14): 124
29 Tong W H, Zhao Z L, Zhang X Y, et al. Microstructure and properties of TiC/Co-based alloy by laser cladding on the surface of nodular graphite cast iron [J]. Acta Metall. Sin., 2017, 53: 472
童文辉, 赵子龙, 张新元 等. 球墨铸铁表面激光熔覆TiC/钴基合金组织和性能研究 [J]. 金属学报, 2017, 53: 472
doi: 10.11900/0412.1961.2016.00288
30 Wang Q M. Study on laser cladding coating on automobile engine valve surface [D]. Jinan: University of Jinan, 2021
王启蒙. 汽车发动机气门表面激光熔覆涂层研究 [D]. 济南: 济南大学, 2021
31 Liu J. Study on strengthening technology of laser cladding Ni-based WC cladding on the surface of valve steel [D]. Qingdao: Qingdao University of Technology, 2021
刘 佳. 气阀钢表面激光熔覆Ni基WC熔覆层的强化工艺研究 [D]. 青岛: 青岛理工大学, 2021
32 Xu Y, Li C, Jia T H, et al. Numerical simulation and experimental research on the laser cladding process of QT600 nodular iron [J]. Surf. Technol., 2022, 51(7): 377
许 彦, 李 昌, 贾腾辉 等. QT600球墨铸铁激光熔覆数值模拟与实验研究 [J]. 表面技术, 2022, 51(7): 377
33 Chen J, Pu X X, Zhang J B, et al. Laser repair of turbine disc of a locomotive internal combustion engine turbocharger [J]. China Surf. Eng., 2014, 27(2): 110
陈 江, 朴新欣, 张静波 等. 机车内燃机涡轮增压器涡轮盘的激光修复 [J]. 中国表面工程, 2014, 27(2): 110
34 Jin Y P. Study on Influencing factors of laser cladding repair of K418 superalloy blade [D]. Beijing: Beijing University of Technology, 2017
靳延鹏. K418高温合金叶片激光熔覆修复的影响因素研究 [D]. 北京: 北京工业大学, 2017
35 Xu S M, Sun W H, Wu W J. Application and prospect of laser cladding technology in auto remanufacturing field [J]. Hot Work. Technol., 2017, 46(22): 33
徐素明, 孙维汉, 武文娟. 激光熔覆技术在汽车再制造领域的应用及前景 [J]. 热加工工艺, 2017, 46(22): 33
36 Qu Z P, Zhang B B, Xie G X, et al. Research progress on protection technology for waste incinerator heating surfaces [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 452
曲作鹏, 张贝贝, 谢广校 等. 垃圾焚烧炉受热面防护技术的研究进展 [J]. 中国腐蚀与防护学报, 2023, 43: 452
doi: 10.11902/1005.4537.2022.237
37 Guan Y, Liu G M, Zhang M Q, et al. High temperature corrosion behavior of Sanicro 25 steel in high-sulfur coal ash/simulated flue gas [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 681
官宇, 刘光明, 张民强 等. Sanicro 25钢在高硫煤灰/模拟烟气中的高温腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 681
doi: 10.11902/1005.4537.2021.155
38 Wang Y T, Zhao Y F, Wei X T, et al. High temperature chlorine corrosion of nickel based alloy coating for piping of waste incineration power plant [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 879
王永田, 赵祎璠, 魏啸天 等. 垃圾焚烧电站水冷壁镍基合金涂层高温氯腐蚀性能研究 [J]. 中国腐蚀与防护学报, 2022, 42: 879
doi: 10.11902/1005.4537.2021.279
39 Yang Y X. Study on microstructure and hot corrosion performance of laser cladding FeCrAlSi coating on 316 stainless steel [D]. Taiyuan: North University of China, 2021
杨宜鑫. 316不锈钢表面激光熔覆FeCrAlSi涂层的组织及热腐蚀性能研究 [D]. 太原: 中北大学, 2021
40 Zhang K, Huang C, Xiong J Z, et al. High-temperature corrosion resistance of laser cladding NiCrMo alloy coating on 15CrMo steel tube surface for waste incinerator [J]. Mater. Mech. Eng., 2021, 45(11): 29
张昆, 黄灿, 熊嘉政 等. 垃圾焚烧炉15CrMo钢管表面激光熔覆NiCrMo合金涂层的耐高温腐蚀性能 [J]. 机械工程材料, 2021, 45(11): 29
doi: 10.11973/jxgccl202111006
41 Han C Y, Sun Y N, Xu Y F, et al. Research on wear and electrochemical corrosion properties of laser cladding nickel base alloy [J]. Surf. Technol., 2021, 50(11): 103
韩晨阳, 孙耀宁, 徐一飞 等. 激光熔覆镍基合金磨损及电化学腐蚀性能研究 [J]. 表面技术, 2021, 50(11): 103
42 Li X Z, Liu Z D, Li H C, et al. Investigations on the behavior of laser cladding Ni-Cr-Mo alloy coating on TP347H stainless steel tube in HCl rich environment [J]. Surf. Coat. Technol., 2013, 232: 627
doi: 10.1016/j.surfcoat.2013.06.048
43 Wang K L, Zang Q B, Wei X G, et al. Effect of La2O3 on corrosion resistance of laser clad Ni-based alloy coatings [J]. J. Chin. Soc. Corros. Prot., 1998, 18: 237
王昆林, 张庆波, 魏兴国 等. La2O3对镍基合金激光熔覆层耐蚀性的影响 [J]. 中国腐蚀与防护学报, 1998, 18: 237
44 Cheng R. Research of technology and properties of laser cladding on Ni/Al2O3-La2O3 surface of 38CrMoAl steel [D]. Nanchang: East China Jiaotong University, 2009
程锐. 38CrMoAl表面激光熔覆Ni/Al2O3-La2O3工艺与熔覆层性能研究 [D]. 南昌: 华东交通大学, 2009
45 Ye F X, Shao W X, Ye X C, et al. Microstructure and corrosion behavior of laser-cladding CeO2-doped Ni-based composite coatings on TC4 [J]. J. Chem., 2020, 2020: 8690428
46 Chen Z X, Zhou H M, Xu C X. Cladding crack in laser cladding: a review [J]. Laser Optoelectron. Progress, 2021, 58: 0700006
陈滋鑫, 周后明, 徐采星. 激光熔覆裂纹研究现状 [J]. 激光与光电子学进展, 2021, 58: 0700006
47 Hou S X, Zhao J K, Li Q, et al. Study on the influencing factors of laser cladding defects [J]. Mater. Rep., 2022, 36(S1): 388
侯锁霞, 赵江昆, 李强 等. 对激光熔覆形成缺陷的影响因素的探究 [J]. 材料导报, 2022, 36(S1): 388
48 Li G Q, Wang L F, Zhao L, et al. Research progress on crack problem of laser cladding layer [J]. Hot Work. Technol., 2021, 50(16): 13
李广琪, 王丽芳, 赵亮 等. 激光熔覆层裂纹问题的研究进展 [J]. 热加工工艺, 2021, 50(16): 13
49 Wang W, Sun W L, Zhou H N, et al. Study on crack formation mechanism and matching method of laser cladding nickel-based alloy coating [J]. Hot Work. Technol., 2022, 51(14): 83
王伟, 孙文磊, 周浩南 等. 激光熔覆镍基合金涂层裂纹形成机理及匹配方法的研究 [J]. 热加工工艺, 2022, 51(14): 83
50 Barr C, Sun D S, Easton M, et al. Influence of macrosegregation on solidification cracking in laser clad ultra-high strength steels [J]. Surf. Coat. Technol., 2018, 340: 126
doi: 10.1016/j.surfcoat.2018.02.052
51 Wang R, Wang Y L, Jiang F L, et al. Effect of substrate preheating on crack sensitivity of Al2O3-ZrO2 ceramic coating prepared by laser cladding [J]. Surf. Technol., 2022, 51(3): 342
王冉, 王玉玲, 姜芙林 等. 基体预热对激光熔覆制备Al2O3-ZrO2陶瓷涂层裂纹敏感性的影响 [J]. 表面技术, 2022, 51(3): 342
52 Ya W, Pathiraj B, Matthews D T A, et al. Cladding of Tribaloy T400 on steel substrates using a high power Nd:YAG laser [J]. Surf. Coat. Technol., 2018, 350: 323
doi: 10.1016/j.surfcoat.2018.06.069
53 Zhang M, Liu S S, Luo S X, et al. Effect of molybdenum on the high-temperature properties of TiC-TiB2 reinforced Fe-based composite laser cladding coatings [J]. J. Alloy. Compd., 2018, 742: 383
doi: 10.1016/j.jallcom.2018.01.275
54 Qi J B. Study on Ultrasonic assisted laser cladding of Ni60 coating [D]. Jinzhou: Liaoning University of Technology, 2021
靳继波. 超声辅助激光熔覆Ni60涂层工艺研究 [D]. 锦州: 辽宁工业大学, 2021
[1] DING Li, ZOU Wenjie, ZHANG Xuejiao, CHEN Jun. Silicon-Zirconium Composite Conversion Film on ADC12 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2023, 43(4): 903-910.
[2] LIU Chao, CHEN Tianqi, LI Xiaogang. Research Progress on Initiation Mechanism of Local Corrosion Induced by Inclusions in Low Alloy Steel[J]. 中国腐蚀与防护学报, 2023, 43(4): 746-754.
[3] ZOU Wenjie, DING Li, ZHANG Xuejiao, CHEN Jun. Epoxy/Organosiloxane Modified Cationic Acrylic Emulsion Composite Coating[J]. 中国腐蚀与防护学报, 2023, 43(4): 922-928.
[4] XIAO Meng, WANG Qinying, ZHANG Xingshou, XI Yuchen, BAI Shulin, DONG Lijin, ZHANG Jin, YANG Junjie. Effect of Laser Quenching on Microstructure, Corrosion and Wear Behavior of AISI 4130 Steel[J]. 中国腐蚀与防护学报, 2023, 43(4): 713-724.
[5] WU Jiahao, WU Liang, YAO Wenhui, YUAN Yuan, XIE Zhihui, WANG Jingfeng, PAN Fusheng. Properties of Layered Dihydroxyl Metal (MgAlLa) Oxide Composite Coatings on Different Micro-arc Oxidation Surfaces of Mg-Gd-Y-Zn-Mn Alloy[J]. 中国腐蚀与防护学报, 2023, 43(4): 693-703.
[6] NI Ya, SHI Fangchang, QI Jiqiu. Effect of Ce on Microstructure and Corrosion Resistance of Zn-0.6Cu-0.3Ti Alloy[J]. 中国腐蚀与防护学报, 2023, 43(4): 803-811.
[7] HU Qian, GAO Jiayi, GUO Ruisheng, SHI Junqin, WANG Xianzong. Long-term Corrosion of Lubricant Infused Surface with Micro-nano Structures on Anodized Aluminum Oxide[J]. 中国腐蚀与防护学报, 2023, 43(4): 773-780.
[8] HU Yunfei, CAO Xiangkang, MA Xiaoze, PAN Jinglong, CAI Guangyi, DONG Zehua. Fluorescent Nanofiller Modified Epoxy Coatings for Visualization of Coating Degradation[J]. 中国腐蚀与防护学报, 2023, 43(3): 460-470.
[9] WANG Hanmin, HUANG Feng, YUAN Wei, ZHANG Jiawei, WANG Xinyu, LIU Jing. Corrosion Behavior of a Novel Cu-Mo Weathering Steel in an Artificial Marine Atmosphere[J]. 中国腐蚀与防护学报, 2023, 43(3): 507-515.
[10] MAO Xuncong, CHEN Leping, PENG Cong. Effect of Chemical Conversion Coatings Ca-P and Sr-P on Corrosion Resistance of Mg-Zn-Zr-Gd Alloy Cast After Solidifying by Pulsed Magnetic Field[J]. 中国腐蚀与防护学报, 2023, 43(3): 647-655.
[11] ZHANG Ergeng, YANG Lei, YANG Hu, LIANG Dandan, CHEN Qiang, ZHOU Qiong, HUANG Biao. Review on Research and Optimization of Corrosion Resistance of Thermal Sprayed Fe-based Amorphous Coatings[J]. 中国腐蚀与防护学报, 2023, 43(2): 399-407.
[12] ZHANG Xiaoli, XUN Maonian, LIANG Xiaohong, ZHANG Caili, HAN Peide. Precipitation of Second Phase and Its Effect on Corrosion Resistance of Ce-containing S31254 Super Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(2): 384-390.
[13] LIU Yun, REN Yanjie, CHEN Jian, ZHOU Libo, QIU Wei, HUANG Weiying, NIU Yan. Preparation and Corrosion Resistance of Ternary Layered Compound Cr2AlC Coating on 304 Stainless Steel for Bipolar Plates of PEMFC[J]. 中国腐蚀与防护学报, 2023, 43(1): 62-68.
[14] ZHANG Jiahuan, CUI Zhongyu, FAN Lin, SUN Mingxian. Effect of Heat Treatment Process on Corrosion Resistance of Ti6321 Alloy[J]. 中国腐蚀与防护学报, 2023, 43(1): 152-158.
[15] JIANG Jie, JIANG Jianjun, YANG Lijing, LEI Bufang, ZHAO Yu, LIN Jianqiang, SONG Zhenlun. Preparation and Corrosion Resistance of Zn-Al Coating on Sintered NdFeB Permanent Magnet[J]. 中国腐蚀与防护学报, 2023, 43(1): 104-110.
No Suggested Reading articles found!