Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (4): 773-780    DOI: 10.11902/1005.4537.2023.154
Current Issue | Archive | Adv Search |
Long-term Corrosion of Lubricant Infused Surface with Micro-nano Structures on Anodized Aluminum Oxide
HU Qian, GAO Jiayi, GUO Ruisheng, SHI Junqin, WANG Xianzong()
Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an 710072, China
Download:  HTML  PDF(7668KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Three double-layered lubricant infused surface (LIS) with different micro-nano structures (nanopores, enlarged nanopores, nanowires) on high purity Al-plates were prepared through anodizing for different times, and then filled with PAO oil. The effect of the structure of anodizing oxide films on the hydrophobicity, corrosion resistance, and stability of the prepared LISs were characterized by scanning electron microscopy (SEM), contact angle measurements, electrochemical impedance spectroscopy (EIS), and corrosion test in simulated seawater. The results showed that the |Z|0.01 Hz of nanowires-LIS was still stable at 108 Ω∙cm2 after immersion in 1 mol/L NaCl for 240 d, showing more stable in long-term immersion corrosion test rather than the nanopores- and enlarged nanopores-LISs. Theoretical analysis showed that the nanowires-structure could store more PAO oil, and the blocking effect of its compact structure and high interaction energy with the oil greatly slow down the loss of PAO, so that the nanowires-LIS showed improved corrosion resistance and stability.

Key words:  micro-nano structure      anodizing anodized aluminum oxide (AAO)      lubricant infused surface (LIS)      corrosion resistance      stability     
Received:  09 May 2023      32134.14.1005.4537.2023.154
ZTFLH:  TG172  
Fund: National Natural Science Foundation of China(51901188);Fundamental Research Funds for the Central Universities
Corresponding Authors:  WANG Xianzong, E-mail: xianzong.wang@nwpu.edu.cn   

Cite this article: 

HU Qian, GAO Jiayi, GUO Ruisheng, SHI Junqin, WANG Xianzong. Long-term Corrosion of Lubricant Infused Surface with Micro-nano Structures on Anodized Aluminum Oxide. Journal of Chinese Society for Corrosion and protection, 2023, 43(4): 773-780.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.154     OR     https://www.jcscp.org/EN/Y2023/V43/I4/773

Fig.1  Schematic illustration of the preparation process of the coatings
Fig.2  SEM images of AAO templates with the microstructures of micron multi-face (a, e), NPs (b, f), enlarged NPs (c, g), and NWs (d, h)
Fig.3  Contact angles of micron multi-face, NPs, enlarged NPs and NWs without and with lubricant (a), and the sliding images of NWs+PAO at 25° (b1, b2)
Fig.4  Bode plots of fresh Al, micron multi-face and AAO without and with lubricant (a), and |Z|0.01 Hz values of each sample (b)
Fig.5  Nyquist (a1-c1) and Bode (a2-c2) plots of NPs+PAO (a1, a2), Enlarged NPs+PAO (b1, b2), and NWs+PAO (c1, c2) after immersion for different time
Fig.6  |Z|0.01 Hz curves of various samples during long-term immersion
Fig.7  Contact angles of various samples before and after immersion (a), and the sliding images of Enlarged NPs+PAO after immersion at 25° (b1, b2)
Fig.8  SEM surface images of NWs+PAO (a, e), NPs+PAO (b, f), enlarged NPs+PAO (c, g) and NWs+PAO (d, h) before (a-d) and after (e-h) immersion
Fig.9  Simulation results of filling of PAO oil in AAO templates with the microstructures of NPs (a1-a3), Enlarged NPs (b1-b3) and NWs (c1-c3)
Fig.10  Interaction energy curves of lubricant infused surfaces of NPs, enlarged NPs and NWs samples
Fig.11  Schematic diagrams of changes in corrosion resistance for NPs+PAO (a), Enlarged NPs+PAO (b) and NWs+PAO (c) samples during long-term immersion
1 Zhang F, Chen S G, Dong L H, et al. Preparation of superhydrophobic films on titanium as effective corrosion barriers [J]. Appl. Surf. Sci., 2011, 257: 2587
doi: 10.1016/j.apsusc.2010.10.027
2 Wang P, Zhang D, Qiu R, et al. Super-hydrophobic film prepared on zinc as corrosion barrier [J]. Corros. Sci., 2011, 53: 2080
doi: 10.1016/j.corsci.2011.02.025
3 Ren J D, Gao R J, Zhang Y, et al. Fabrication of amphiphobic surface of pipeline steel by acid etching and its anti-corrosion properties [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 233
任继栋, 高荣杰, 张 宇 等. 混酸刻蚀-氟化处理制备X80管线钢双疏表面及其耐蚀性研究 [J]. 中国腐蚀与防护学报, 2017, 37: 233
doi: 10.11902/1005.4537.2016.017
4 Qiu R, Zhang D, Wang P. Superhydrophobic-carbon fibre growth on a zinc surface for corrosion inhibition [J]. Corros. Sci., 2013, 66: 350
doi: 10.1016/j.corsci.2012.09.041
5 Wu D Q, Zhang D W, Liu B, et al. Research progress for design and fabrication of LIS/SLIPS [J]. Surf. Technol., 2019, 48(1): 90
吴德权, 张达威, 刘 贝 等. 超滑表面(LIS/SLIPS)的设计与制备研究进展 [J]. 表面技术, 2019, 48(1): 90
6 Wong T S, Kang S H, Tang S K Y, et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity [J]. Nature, 2011, 477: 443
doi: 10.1038/nature10447
7 Yang S S, Qiu R, Song H Q, et al. Slippery liquid-infused porous surface based on perfluorinated lubricant/iron tetradecanoate: Preparation and corrosion protection application [J]. Appl. Surf. Sci., 2015, 328: 491
doi: 10.1016/j.apsusc.2014.12.067
8 Yang Z, Liu X P, Tian Y L. A contrastive investigation on anticorrosive performance of laser-induced super-hydrophobic and oil-infused slippery coatings [J]. Prog. Org. Coat., 2020, 138: 105313
9 Shi Z Q, Xiao Y M, Qiu R, et al. A facile and mild route for fabricating slippery liquid-infused porous surface (SLIPS) on CuZn with corrosion resistance and self-healing properties [J]. Surf. Coat. Technol., 2017, 330: 102
doi: 10.1016/j.surfcoat.2017.09.053
10 Shi Z Q, Ouyang Y B, Qiu R, et al. Bioinspired superhydrophobic and oil-infused nanostructured surface for cu corrosion inhibition: A comparison study [J]. Prog. Org. Coat., 2019, 131: 49
11 Wu D Q, Ma L W, Zhang F, et al. Durable deicing lubricant-infused surface with photothermally switchable hydrophobic/slippery property [J]. Mater. Des., 2020, 185: 108236
doi: 10.1016/j.matdes.2019.108236
12 Ho J Y, Rabbi K F, Sett S, et al. Dropwise condensation of low surface tension fluids on lubricant-infused surfaces: Droplet size distribution and heat transfer [J]. Int. J. Heat Mass Transfer, 2021, 172: 121149
doi: 10.1016/j.ijheatmasstransfer.2021.121149
13 Wang P, Lu Z, Zhang D. Slippery liquid-infused porous surfaces fabricated on aluminum as a barrier to corrosion induced by sulfate reducing bacteria [J]. Corros. Sci., 2015, 93: 159
doi: 10.1016/j.corsci.2015.01.015
14 Emelyanenko K A, Emelyanenko A M, Boinovich L B. Laser obtained superhydrophobic state for stainless steel corrosion protection, a review [J]. Coatings, 2023, 13: 194
doi: 10.3390/coatings13010194
15 Yang C J, Tong Y C, Li B Y, et al. The effect of high temperature annealing on surface wettability, mechanical and chemical properties of laser ablated nitinol surface [J]. Opt. Laser Technol., 2023, 161: 109108
doi: 10.1016/j.optlastec.2023.109108
16 Yuan J, Yuan R, Wang J H, et al. Fabrication and corrosion resistance of phosphate/ZnO multilayer protective coating on magnesium alloy [J]. Surf. Coat. Technol., 2018, 352: 74
doi: 10.1016/j.surfcoat.2018.07.090
17 Lee J, Shin S, Jiang Y H, et al. Oil-impregnated nanoporous oxide layer for corrosion protection with self-healing [J]. Adv. Funct. Mater., 2017, 27: 1606040
doi: 10.1002/adfm.v27.15
18 Song T T, Liu Q, Liu J Y, et al. Fabrication of super slippery sheet-layered and porous anodic aluminium oxide surfaces and its anticorrosion property [J]. Appl. Surf. Sci., 2015, 355: 495
doi: 10.1016/j.apsusc.2015.07.140
19 Muschi M, Brudieu B, Teisseire J, et al. Drop impact dynamics on slippery liquid-infused porous surfaces: Influence of oil thickness [J]. Soft Matter, 2018, 14(7): 1100
doi: 10.1039/c7sm02026k pmid: 29333557
20 Sett S, Yan X, Barac G, et al. Lubricant-infused surfaces for low-surface-tension fluids: Promise versus reality [J]. ACS Appl. Mater. Interfaces, 2017, 9: 36400
doi: 10.1021/acsami.7b10756
21 Li Y Q, Si W T, Gao R J. Preparation of superamphiphobic surface on al-alloy and its corrosion resistance [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 966
李育桥, 司伟婷, 高荣杰. 铝合金超双疏表面的制备及其耐蚀性研究 [J]. 中国腐蚀与防护学报, 2022, 42: 966
doi: 10.11902/1005.4537.2021.339
22 Zhang B B, Zhao X, Li Y T, et al. Fabrication of durable anticorrosion superhydrophobic surfaces on aluminum substrates via a facile one-step electrodeposition approach [J]. RSC Adv., 2016, 6(42): 35455
doi: 10.1039/C6RA05484F
23 Wu W C, Wang X L, Wang D A, et al. Alumina nanowire forests via unconventional anodization and super-repellency plus low adhesion to diverse liquids [J]. Chem. Commun., 2009, (9): 1043
24 Guo R S, Hu H Y, Liu Z L, et al. Highly durable hydrophobicity in simulated space environment [J]. RSC Adv., 2014, 4: 28780
doi: 10.1039/C4RA02552K
[1] DING Li, ZOU Wenjie, ZHANG Xuejiao, CHEN Jun. Silicon-Zirconium Composite Conversion Film on ADC12 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2023, 43(4): 903-910.
[2] LIU Chao, CHEN Tianqi, LI Xiaogang. Research Progress on Initiation Mechanism of Local Corrosion Induced by Inclusions in Low Alloy Steel[J]. 中国腐蚀与防护学报, 2023, 43(4): 746-754.
[3] ZOU Wenjie, DING Li, ZHANG Xuejiao, CHEN Jun. Epoxy/Organosiloxane Modified Cationic Acrylic Emulsion Composite Coating[J]. 中国腐蚀与防护学报, 2023, 43(4): 922-928.
[4] XIAO Meng, WANG Qinying, ZHANG Xingshou, XI Yuchen, BAI Shulin, DONG Lijin, ZHANG Jin, YANG Junjie. Effect of Laser Quenching on Microstructure, Corrosion and Wear Behavior of AISI 4130 Steel[J]. 中国腐蚀与防护学报, 2023, 43(4): 713-724.
[5] WU Duoli, WU Haotian, SUN Hui, SHI Jianjun, WEI Xinlong, ZHANG Chao. Research Status and Development of Laser Cladding High Temperature Protective Coating[J]. 中国腐蚀与防护学报, 2023, 43(4): 725-736.
[6] WU Jiahao, WU Liang, YAO Wenhui, YUAN Yuan, XIE Zhihui, WANG Jingfeng, PAN Fusheng. Properties of Layered Dihydroxyl Metal (MgAlLa) Oxide Composite Coatings on Different Micro-arc Oxidation Surfaces of Mg-Gd-Y-Zn-Mn Alloy[J]. 中国腐蚀与防护学报, 2023, 43(4): 693-703.
[7] NI Ya, SHI Fangchang, QI Jiqiu. Effect of Ce on Microstructure and Corrosion Resistance of Zn-0.6Cu-0.3Ti Alloy[J]. 中国腐蚀与防护学报, 2023, 43(4): 803-811.
[8] HU Yunfei, CAO Xiangkang, MA Xiaoze, PAN Jinglong, CAI Guangyi, DONG Zehua. Fluorescent Nanofiller Modified Epoxy Coatings for Visualization of Coating Degradation[J]. 中国腐蚀与防护学报, 2023, 43(3): 460-470.
[9] WANG Hanmin, HUANG Feng, YUAN Wei, ZHANG Jiawei, WANG Xinyu, LIU Jing. Corrosion Behavior of a Novel Cu-Mo Weathering Steel in an Artificial Marine Atmosphere[J]. 中国腐蚀与防护学报, 2023, 43(3): 507-515.
[10] MAO Xuncong, CHEN Leping, PENG Cong. Effect of Chemical Conversion Coatings Ca-P and Sr-P on Corrosion Resistance of Mg-Zn-Zr-Gd Alloy Cast After Solidifying by Pulsed Magnetic Field[J]. 中国腐蚀与防护学报, 2023, 43(3): 647-655.
[11] ZHANG Ergeng, YANG Lei, YANG Hu, LIANG Dandan, CHEN Qiang, ZHOU Qiong, HUANG Biao. Review on Research and Optimization of Corrosion Resistance of Thermal Sprayed Fe-based Amorphous Coatings[J]. 中国腐蚀与防护学报, 2023, 43(2): 399-407.
[12] ZHANG Xiaoli, XUN Maonian, LIANG Xiaohong, ZHANG Caili, HAN Peide. Precipitation of Second Phase and Its Effect on Corrosion Resistance of Ce-containing S31254 Super Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(2): 384-390.
[13] LIU Yun, REN Yanjie, CHEN Jian, ZHOU Libo, QIU Wei, HUANG Weiying, NIU Yan. Preparation and Corrosion Resistance of Ternary Layered Compound Cr2AlC Coating on 304 Stainless Steel for Bipolar Plates of PEMFC[J]. 中国腐蚀与防护学报, 2023, 43(1): 62-68.
[14] ZHANG Jiahuan, CUI Zhongyu, FAN Lin, SUN Mingxian. Effect of Heat Treatment Process on Corrosion Resistance of Ti6321 Alloy[J]. 中国腐蚀与防护学报, 2023, 43(1): 152-158.
[15] JIANG Jie, JIANG Jianjun, YANG Lijing, LEI Bufang, ZHAO Yu, LIN Jianqiang, SONG Zhenlun. Preparation and Corrosion Resistance of Zn-Al Coating on Sintered NdFeB Permanent Magnet[J]. 中国腐蚀与防护学报, 2023, 43(1): 104-110.
No Suggested Reading articles found!