Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (4): 812-820    DOI: 10.11902/1005.4537.2023.155
Current Issue | Archive | Adv Search |
High-temperature Performance of MoSi2 Modified YGYZ Thermal Barrier Coating
YU Bo1, LI Zhang1(), ZHOU Kaixuan2, TIAN Haoliang1(), FANG Yongchao1, ZHANG Xiaomin2, JIN Guo2
1.Aviation Key Laboratory of Science and Technology on advanced Corrosion and Protection for Aviation Material, AECC Beijing Institution of Aeronautical Materials, Beijing 100095, China
2.Institute of Surface Science and Technology, Harbin Engineering University, Harbin 150001, China
Download:  HTML  PDF(7369KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In order to improve the service performance of traditional zirconia-based ceramic coatings in high-temperature and high-pressure environment, the novel thermal barrier coatings based on Y2O3/Gd2O3/Yb2O3 co-doped ZrO2 top layer (YGYZ), Y2O3/Eu2O3 co-doped ZrO2 middle layer and NiCoCrAlYTa bonding layer were prepared, whose YGYZ top layers were doped with 10%, 20%, and 30% MoSi2 self-healing particles, respectively. Then their microstructure, chemical composition, phase constitution and isothermal oxidation resistance at 1100 oC in air were assessed by means of scanning electron microscope (SEM), X-ray diffractometer (XRD), X-ray energy dispersive spectrometer (EDS) and box muffle furnace. The results show that the cross-sectional morphologies of the coatings doped MoSi2 self-healing particleswere layered structures, and their phase structures would not change with the variation of the doping amount of MoSi2, they were all composed of t-ZrO2 and t-MoSi2. Among them, the coating with a top layer doped 20% MoSi2 exhibited the best high temperature performance, whose weight gain was 3.7 mg/cm2 after 200 h constant temperature oxidation at 1100 oC, which decreased by 5% and 18%, respectively, compared to coatings with 10% and 30% MoSi2.

Key words:  thermal barrier coating      self-reparing      plasema spraying      oxidation resistance     
Received:  01 June 2023      32134.14.1005.4537.2023.155
ZTFLH:  TG156.88  
Fund: National Key Research and Development Program of China(2121YFB3702004);National Natural Science Foundation of China(52075508)
Corresponding Authors:  LI Zhang, E-mail: lz960126@126.com;TIAN Haoliang, E-mail: haoliangtian@163.com   

Cite this article: 

YU Bo, LI Zhang, ZHOU Kaixuan, TIAN Haoliang, FANG Yongchao, ZHANG Xiaomin, JIN Guo. High-temperature Performance of MoSi2 Modified YGYZ Thermal Barrier Coating. Journal of Chinese Society for Corrosion and protection, 2023, 43(4): 812-820.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.155     OR     https://www.jcscp.org/EN/Y2023/V43/I4/812

SampleZrO2Ni@MoSi2Y2O3Yb2O3Gd2O3
FM1Bal.109.55.65.2
FM2Bal.209.55.65.2
FM3Bal.309.55.65.2
Table 1  Specific parameters of MoSi2/YGYZ powders
LayerArc current ASpray gun speed / mm·s-1Spray distance / mmWorking gas flow rate Ar (SLPM)Working gas flow rate H2 (SLPM)Carrier gas N2 (SLPM)
Bonding layer500~550600100~12030~358~104~6
Middle layer550~600600120~15032~3610~124~6
Top layer550~600600120~15036~4012~144~6
Table 2  Deposition parameters of TBCs by atmospheric plasma spraying
Fig.1  SEM morphologies of FM1 (a), FM2 (b) and FM3 (c) powders
Fig.2  SEM images of the FM2 composite ceramic powders calcined at 1250 ℃ for 2 h: (a, b) surface, (c, d) inside of powders
PositionMoSiZrO
A1.266.3215.89Bal.
B1.386.8417.65Bal.
Table 3  EDS analysis of FM2 powders (atomic fraction / %)
Fig.3  XRD patterns of FM1, FM2 and FM3 powders
Fig.4  XRD patterns of FM1, FM2 and FM3 powders after calcination
Fig.5  XRD patterns of FM2 powders after high temperature calcinations
Fig.6  Optical cross-sectional images of M1 (a), M2 (b) and M3 (c) coatings
Fig.7  Surface XRD patterns of M1, M2 and M3 coatings
Fig.8  Mass gain curves of M1, M2 and M3 coatings during oxidation in air at 1100 ℃
Fig.9  XRD patterns of M1, M2, M3 coatings after oxidation at 1100 ℃ for 50 h
Fig.10  XRD patterns of M1, M2, M3 coatings after oxidation at 1100 ℃ for 200 h
Fig.11  Cross-sectional morphologies of TGO formed in M1 (a, d), M2 (b, e) and M3 (c, f) coatings after oxidation at 1100 ℃ for 50 h (a-c) and 200 h (d-f), respectively
Fig.12  EDS elemental line scannings across the interface between the bonding layer and middle layer of M1 coating after oxidation for 20 h
Fig.13  EDS elemental line scannings across the interface between the bonding layer and middle layer of M1 coating after oxidation for 50 h
SampleTaAlCoCrNiO
10.3742.113.633.733.95Bal.
2048.283.213.082.04Bal.
Table 4  EDS results of the TGO layer formed in M1 coating after 50 h oxidation (atomic fraction / %)
Fig.14  EDS elemental line scannings across the interface between the bonding layer and middle layer of M1 coating after oxidation for 200 h
SampleTaAlCoCrNiO
1027.717.816.7820.12Bal.
20.151.271.360.981.02Bal.
Table 5  EDS results of the TGO layer formed in M1 coating after 200 h oxidation (atomic fraction / %)
1 Clarke D R, Oechsner M, Padture N P. Thermal-barrier coatings for more efficient gas-turbine engines [J]. MRS Bull., 2012, 37: 891
2 Padture N P, Gell M, Jordan E H. Thermal barrier coatings for gas-turbine engine applications [J]. Science, 2002, 296: 280
pmid: 11951028
3 Jin G, Fang Y C, Cui X F, et al. Effect of YSZ fibers and carbon nanotubes on bonding strength and thermal cycling lifetime of YSZ-La2Zr2O7 thermal barrier coatings [J]. Surf. Coat. Technol., 2020, 397: 125986
doi: 10.1016/j.surfcoat.2020.125986
4 Chen D, Wang Q S, Liu Y B, et al. Microstructure, thermal characteristics, and thermal cycling behavior of the ternary rare earth oxides (La2O3, Gd2O3, and Yb2O3) co-doped YSZ coatings [J]. Surf. Coat. Technol., 2020, 403: 126387
doi: 10.1016/j.surfcoat.2020.126387
5 Zhang T Y, Wu C, Xiong Z, et al. Research progress in materials and preparation techniques of thermal barrier coatings [J]. Laser Optoelectr. Prog., 2014, 51(3): 31
张天佑, 吴 超, 熊 征 等. 热障涂层材料及其制备技术的研究进展 [J]. 激光与光电子学进展, 2014, 51(3): 31
6 Miller R A. Thermal barrier coatings for aircraft engines: history and directions [J]. J. Therm. Spray Technol., 1997, 6: 35
doi: 10.1007/BF02646310
7 Paul S, Cipitria A, Golosnoy I O, et al. Effects of impurity content on the sintering characteristics of plasma-sprayed Zirconia [J]. J. Therm. Spray Technol., 2007, 16: 798
doi: 10.1007/s11666-007-9097-5
8 Choi S R, Zhu D M, Miller R A. Effect of Sintering on Mechanical Properties of Plasma-Sprayed Zirconia-Based Thermal Barrier Coatings [J]. J. Am. Ceram. Soc., 2005, 88(10) : 2859
doi: 10.1111/jace.2005.88.issue-10
9 Zhu D M, Miller R A. Sintering and creep behavior of plasma-sprayed zirconia-and hafnia-based thermal barrier coatings [J]. Surf. Coat. Technol., 1998, 108/109: 114
10 He Q, Wang S X, Zhan H, et al. Properties of Gd2O3-Yb2O3-Y2O3-ZrO2 material and thermal barrier coating [J]. Therm. Spray Technol., 2011, 3(4): 28
何 箐, 王世兴, 詹 华 等. Gd2O3-Yb2O3-Y2O3-ZrO2热障涂层材料及涂层性能研究 [J]. 热喷涂技术, 2011, 3(4): 28
11 Li J, Xie Z, He J, et al. Thermophysical properties of Gd2O3-Yb2O3-Y2O3-ZrO2 thermal barrier coating material [J]. Surf. Technol., 2015, 44(9): 18
李 嘉, 谢 铮, 何 箐 等. Gd2O3-Yb2O3-Y2O3-ZrO2热障涂层材料的热物理性能 [J]. 表面技术, 2015, 44(9): 18
12 White S R, Sottos N R, Geubelle P H, et al. Autonomic healing of polymer composites [J]. Nature, 2001, 409: 794
doi: 10.1038/35057232
13 Wang L. Self-healing gradient MoSi2-based anti-oxidation coatings prepared by SAPS [D]. Xi'an: Northwestern Polytechnical University, 2018
王 璐. SAPS制备自愈合梯度MoSi2基抗氧化涂层的研究 [D]. 西安: 西北工业大学, 2018
14 Chen H F, Zhang C, Yang G, et al. YSZ-Ti3SiC2 thermal barrier coating and its self-healing mechanism under high temperatures [J]. Aeronaut. Manufactur. Technol., 2019, 62(18): 90
陈宏飞, 张 弛, 杨 光 等. YSZ-Ti3SiC2热障涂层及其高温自愈合机制 [J]. 航空制造技术, 2019, 62(18): 90
15 Xing K Y, Wang X, Li Z X, et al. Research progress of modified MoSi2 coating on molybdenum and Mo-based alloys [J]. Mater. Prot., 2018, 51(12): 104
邢开源, 汪 欣, 李争显 等. 钼及其合金表面改性MoSi2涂层研究进展 [J]. 材料保护, 2018, 51(12): 104
16 Zhang X L, Lv Z L, Jin Z H. The study of pressureless-sintered Mo(Si,Al)2-SiC composite [J]. Rare Met. Mater. Eng., 2005, 34: 1267
张小立, 吕振林, 金志浩. 无压反应烧结Mo(Si,Al)2-SiC复合材料的研究 [J]. 稀有金属材料与工程, 2005, 34: 1267
17 Mitra R. Mechanical behaviour and oxidation resistance of structural silicides [J]. Int. Mater. Rev., 2006, 51: 13
doi: 10.1179/174328006X79454
18 Liu Y Q, Shao G, Tsakiropoulos P. On the oxidation behaviour of MoSi2 [J]. Intermetallics, 2001, 9: 125
doi: 10.1016/S0966-9795(00)00114-X
19 Liu X J. The formation and growth kinetics of thermally grown oxides in plasma sprayed 8YSZ thermal barrier coatings [D]. Fuzhou: Fuzhou University, 2016
刘小菊. 等离子喷涂8YSZ热障涂层中TGO的形成与生长动力学 [D]. 福州: 福州大学, 2016
20 Wang Y Y. Oxidation behavior and failure analysis of plasma sprayed thermal barrier coatings [D]. Shenyang: Shenyang University of Technology, 2015
王迎亚. 等离子喷涂热障涂层的氧化行为及失效分析 [D]. 沈阳: 沈阳工业大学, 2015
21 Wu J, Guan Q F, Cai J, et al. Microstructure and thermal cycling behavior of the surface-modified thermal barrier coatings by high-current pulsed electron beam [J]. Mater. Rep., 2018, 32: 2202
吴 健, 关庆丰, 蔡 杰 等. 脉冲电子束作用下热障涂层微观结构及热循环性能 [J]. 材料导报, 2018, 32: 2202
22 Wang C, Zhou X, Xie X Y J, et al. Thermal Cycle Behavior of La2(Zr0.7Ce0.3)2O7/YSZ Double-layer Thermal Barrier Coatings for Heavy Duty Gas Turbines [J]. Therm. Spray Techn., 2019, 11(3): 14
汪 超, 周 鑫, 解旭阳 等. 重型燃气轮机用La2(Zr0.7Ce0.3)2O7-YSZ双层热障涂层热循环性能研究 [J]. 热喷涂技术, 2019, 11(3): 14
[1] ZHOU Wenhui, SONG Jian, CHEN Zehao, YANG Lanlan, WANG Jinlong, CHEN Minghui, ZHU Shenglong, WANG Fuhui. Effect of Low Temperature Degradation on Tribological Properties of YSZ Thermal Barrier Coatings[J]. 中国腐蚀与防护学报, 2023, 43(2): 261-270.
[2] HU Yunyuan, QIAN Wei, HUA Yinqun, YE Yunxia, CAI Jie, DAI Fengze. Effect of Pre-corrosion of Gd2Zr2O7 at 900-1300 ℃ on Its Hot Corrosion Behavior at 1250 ℃ Beneath Deposites of CaO-MgO-Al2O3-SiO2[J]. 中国腐蚀与防护学报, 2022, 42(4): 687-692.
[3] XU Xunhu,HE Cuiqun,XIANG Junhuai,WANG Ling,ZHANG Honghua,ZHENG Xiaodong. High Temperature Oxidation Behavior of Co-20Re-25Cr-1Si Alloy in 0.1 MPa Pure Oxygen[J]. 中国腐蚀与防护学报, 2020, 40(1): 75-80.
[4] YU Chuntang,YANG Yingfei,BAO Zebin,ZHU Shenglong. Research Progress in Preparation and Development of Excellent Bond Coats for Advanced Thermal Barrier Coatings[J]. 中国腐蚀与防护学报, 2019, 39(5): 395-403.
[5] AI Peng,LIU Lixiang,LI Xiaogang,JIANG Wentao. Influence of TiAlSiN Coatings on High Temperature Oxidation Resistance of γ-TiAl Based Alloys[J]. 中国腐蚀与防护学报, 2019, 39(4): 306-312.
[6] Lijia YU,Wenping LIANG,Hao LIN,Qiang MIAO,Biaozi HUANG,Shiyu CUI. Evaluation of Hot Corrosion Behavior of Laser As-remelted YSZ Thermal Barrier Coatings at 950 ℃[J]. 中国腐蚀与防护学报, 2019, 39(1): 77-82.
[7] Ling WANG,Junhuai XIANG,Honghua ZHANG,Songlin QIN. High Temperature Oxidation Behavior of Three Co-20Re-xCr Alloys in 3.04×10-5 Pa Oxygen at 1000 and 1100 ℃[J]. 中国腐蚀与防护学报, 2019, 39(1): 83-88.
[8] Chao SUN, Xiao YANG, Yuhua WEN. Effect of High-Al Austenitic Stainless Alloy Coatings Prepared by Magnetron Sputtering on High Temperature Oxidation Resistance of 316 Stainless Steel[J]. 中国腐蚀与防护学报, 2017, 37(6): 590-596.
[9] Xizhong WANG,Jianhao WU,Hui PENG,Hongbo GUO,Shengkai GONG. Hot-gas Corrosion Resistance of La2Ce2O7/8YSZ Duble-ceramic-layered Thermal Barrier Coating[J]. 中国腐蚀与防护学报, 2017, 37(1): 36-40.
[10] Xinhui LI,Wen MA,Yichuan YIN,Bole MA,Yu BAI,Ruiling JIA,Hongying DONG. Optimization of Preparation Process of Solution Precursor Plasma Spraying for SrZrO3 Thermal Barrier Coating[J]. 中国腐蚀与防护学报, 2017, 37(1): 41-46.
[11] Lili CAI,Wen MA,Xinhui LI,Yichuan YIN,Bole MA,Yu BAI,Jun WANG,Hongying DONG. Corrosion Resistance of (Gd0.7Sr0.3)ZrO3.35 Coating against CaO-MgO-Al2O3-SiO2 (CMAS)[J]. 中国腐蚀与防护学报, 2017, 37(1): 47-52.
[12] Shanrong ZHANG,Hongying DONG,Wen MA,Yichuan YIN,Xinhui LI,Yu BAI,Ruiling JIA. Corrosion Resistance of Air Plasma Sprayed Thermal Barrier Coating SrZrO3 on Superalloy In718 against CaO-MgO-Al2O3-SiO2 (CMAS)[J]. 中国腐蚀与防护学报, 2017, 37(1): 53-57.
[13] CHEN Chen,GUO Hongbo,GONG Shengkai. Failure Analysis of Thermal Barrier Coating Being Subjected to Lateral Thermal Gradient on Surface[J]. 中国腐蚀与防护学报, 2013, 33(5): 400-406.
[14] ZHAO Shilu ZHANG Jun LIU Changsheng. HIGH TEMPERATURE OXIDATION BEHAVIOR OF MULTI-COMPONENT (Ti, Al, Zr,Cr) N FILMS\par DEPOSITED BY MULTI-ARC ION PLATING[J]. 中国腐蚀与防护学报, 2009, 29(4): 296-300.
[15] ANG Dongsheng TIAN Zongjun CHEN Zhiyong SHEN Lida WU Hongyan ZHANG Pingze LIU . HIGH-TEMPERATURE OXIDATION RESISTANCE COATINGS ON TiAl ALLOY SURFACE[J]. 中国腐蚀与防护学报, 2009, 29(1): 1-8.
No Suggested Reading articles found!