Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (3): 507-515    DOI: 10.11902/1005.4537.2022.170
Current Issue | Archive | Adv Search |
Corrosion Behavior of a Novel Cu-Mo Weathering Steel in an Artificial Marine Atmosphere
WANG Hanmin, HUANG Feng(), YUAN Wei, ZHANG Jiawei, WANG Xinyu, LIU Jing
Hubei Engineering Technology Research Center of Marine Materials and Service Safety, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
Download:  HTML  PDF(12662KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The long-term corrosion behavior of a novel Cu-Mo test steel in an artificial marine atmosphere was studied by means of dry-wet alternate periodic immersion test, field emission scanning electron microscopy (FE-SEM), field emission electron probe (FE-EPMA), X-ray diffractometer (XRD), Raman spectroscopy (Raman) and electrochemical test. The results show that the Cu-Mo test steel presents a microstructure composed mainly of polygonal ferrite and a small amount of lamellar pearlite, while the counterpart Cr-containing weathering steel presents a microstructure composed mainly of bainite and ferrite. The corrosion process of the Cu-Mo test steel can be divided into two stages: acceleration and deceleration. In the early stage of corrosion, the corrosion resistance of the Cu-Mo test steel is inferior to that of the ordinary Cr-containing weathering steel. At the later stage of corrosion, the enrichment of Cu and Mo occurred in the Cu-Mo test steel, thereby resulted in the increase of α-FeOOH, which enhanced the protectiveness of the rust layer, therefore the corrosion rate of the Cu-Mo test steel decreased. In a word, the new Cu-Mo test steel presents better weathering resistance rather than that of the ordinary Cr-containing weathering steel.

Key words:  Cu-Mo test steel      marine atmosphere      corrosion resistance     
Received:  29 May 2022      32134.14.1005.4537.2022.170
ZTFLH:  TG172  
Fund: Hubei Natural Science Foundation Science and Technology Innovation Group(2021CFA023)
Corresponding Authors:  HUANG Feng, E-mail: huangfeng@wust.edu.cn

Cite this article: 

WANG Hanmin, HUANG Feng, YUAN Wei, ZHANG Jiawei, WANG Xinyu, LIU Jing. Corrosion Behavior of a Novel Cu-Mo Weathering Steel in an Artificial Marine Atmosphere. Journal of Chinese Society for Corrosion and protection, 2023, 43(3): 507-515.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.170     OR     https://www.jcscp.org/EN/Y2023/V43/I3/507

SampleCSiMnPSNiCuCrMoFe
New Cu-Mo test steel<0.210.281.000.013<0.0100.160.53-0.52Bal.
Cr-bearing weathering steel<0.210.301.040.014<0.0100.150.320.50<0.1Bal.
Q355C<0.210.271.460.0170.010----Bal.
Table 1  Main chemical compositions of three steels (mass fraction / %)
Fig.1  Microstructural images of new Cu-Mo test steel (a), Cr-bearing weathering steel (b) and Q355C steel (c)
Fig.2  Average corrosion rate of three steels changes with time
Fig.3  Micromorphologies of rust layer surface of new Cu-Mo test steel (a1, b1), Cr-bearing weathering steel (a2, b2) and Q355C steel (a3, b3) after corrosion for 768 h (b1, b2 and b3 are local enlargements of a1, a2 and a3, respectively)
Fig.4  Cross-sectional morphologies and element distribution of rust layers of new Cu-Mo test steel (a), Cr-bearing weathering steel (b) and Q355C steel (c) after immersion for 768 h
Fig.5  XRD patterns (a) and semi-quantiative analysis of XRD patterns of rust layers (b) of three steels after 768 h corrosion
Fig.6  Phase distribution of rust layer cross section of new Cu-Mo test steel (a), Cr-bearing weathering steel (b) and Q355C steel (c) after 768 h corrosion
Fig.7  Nyquist (a) and Bode (b) spectrums of three steels after 768 h corrosion
Fig.8  Equivalent circuit for fitting EIS spectra (a) and EIS fitting results (b) of three steels after 768 h corrosion
Fig.9  Corrosion depth-time double logarithmic curves of new Cu-Mo test steel (a), Cr-bearing weathering steel (b) and Q355C steel (c)
1 Liu H X, Huang F, Yuan W, et al. Corrosion behavior of 690 MPa grade high strength bainite steel in a simulated rural atmosphere [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 416
刘海霞, 黄 峰, 袁 玮 等. 690 MPa级高强贝氏体钢在模拟乡村大气中的腐蚀行为 [J]. 中国腐蚀与防护学报, 2020, 40: 416
doi: 10.11902/1005.4537.2020.002
2 Hao L, Zhang S X, Dong J H, et al. Atmospheric corrosion resistance of MnCuP weathering steel in simulated environments [J]. Corros. Sci., 2011, 53: 4187
doi: 10.1016/j.corsci.2011.08.028
3 Wang Y, Mu X, Chen Z Y, et al. Understanding the role of alloyed Cu and P in the initial rust composition of weathering steel formed in a simulated coastal-industrial atmosphere [J]. Corros. Sci., 2021, 193: 109912
doi: 10.1016/j.corsci.2021.109912
4 Zhang T Y, Xu X X, Li Y, et al. The function of Cr on the rust formed on weathering steel performed in a simulated tropical marine atmosphere environment [J]. Constr. Build. Mater., 2021, 277: 122298
doi: 10.1016/j.conbuildmat.2021.122298
5 Sun M H, Du C W, Liu Z Y, et al. Fundamental understanding on the effect of Cr on corrosion resistance of weathering steel in simulated tropical marine atmosphere [J]. Corros. Sci., 2021, 186: 109427
doi: 10.1016/j.corsci.2021.109427
6 Wu W, Cheng X Q, Zhao J B, et al. Benefit of the corrosion product film formed on a new weathering steel containing 3% nickel under marine atmosphere in Maldives [J]. Corros. Sci., 2020, 165: 108416
doi: 10.1016/j.corsci.2019.108416
7 Cheng X Q, Tian Y W, Li X G, et al. Corrosion behavior of nickel-containing weathering steel in simulated marine atmospheric environment [J]. Mater. Corros., 2014, 65: 1033
8 Wang F C, Zhao J B, Liu B, et al. Comparative study of rust layers on the advanced 3Ni steel, Q235 carbon steel and conventional weathering steel exposed to atmosphere environment of tropical islands [J]. Mater. Prot., 2020, 53(3): 8
王发仓, 赵晋斌, 刘 波 等. 新型3Ni钢和Q235碳钢、普通耐候钢在热带岛屿大气环境中暴晒后的锈层对比分析 [J]. 材料保护, 2020, 53(3): 8
9 Nishimura T. Electrochemical behaviour and structure of rust formed on Si- and Al-bearing steel after atmospheric exposure [J]. Corros. Sci., 2010, 52: 3609
doi: 10.1016/j.corsci.2010.07.006
10 Ahn S H, Park K J, Oh K N, et al. Effects of Sn and Sb on the corrosion resistance of AH 32 steel in a cargo oil tank environment [J]. Met. Mater. Int., 2015, 21: 865
doi: 10.1007/s12540-015-5164-5
11 Sun Y P, Wei X, Dong J H, et al. Understanding the role of alloyed Ni and Cu on improving corrosion resistance of low alloy steel in the simulated Beishan groundwater [J]. J. Mater. Sci. Technol., 2022, 130: 124
doi: 10.1016/j.jmst.2022.03.037
12 Zhang T Y, Liu W, Fan Y M, et al. Effect of synergistic action of Cu/Ni on corrosion resistance of low alloy steel in a simulated tropical marine atmosphere [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 511
张天翼, 柳 伟, 范玥铭 等. 海洋大气环境Cu/Ni协同作用对低合金钢耐蚀性影响 [J]. 中国腐蚀与防护学报, 2019, 39: 511
doi: 10.11902/1005.4537.2018.165
13 Wu W, Dai Z Y, Liu Z Y, et al. Synergy of Cu and Sb to enhance the resistance of 3%Ni weathering steel to marine atmospheric corrosion [J]. Corros. Sci., 2021, 183: 109353
doi: 10.1016/j.corsci.2021.109353
14 Sun M H, Yang X J, Du C W, et al. Distinct beneficial effect of Sn on the corrosion resistance of Cr-Mo low alloy steel [J]. J. Mater. Sci. Technol., 2021, 81: 175
doi: 10.1016/j.jmst.2020.12.014
15 Wang J J, Huang F, Zhou X J, et al. Relative function of effects of alloy elements on corrosion resistance of weathering steels in marine atmosphere [J]. Corros. Prot., 2015, 36: 58
王晶晶, 黄 峰, 周学俊 等. 合金元素对耐候钢在海洋大气中耐蚀性影响的交互作用 [J]. 腐蚀与防护, 2015, 36: 58
16 Hao L, Zhang S X, Dong J H, et al. A study of the evolution of rust on Mo-Cu-bearing fire-resistant steel submitted to simulated atmospheric corrosion [J]. Corros. Sci., 2012, 54: 244
doi: 10.1016/j.corsci.2011.09.023
17 Zhao B J, Zhao J J, Fan Y, et al. Corrosion behaviors of Mo-containing low alloy steels exposed in simulated acidic marine atmosphere environment [J]. Dev. Appl. Mater., 2019, 34(6): 86
赵柏杰, 赵俊杰, 范 益 等. 含Mo低合金钢在模拟酸性海洋大气环境中的腐蚀规律研究 [J]. 材料开发与应用, 2019, 34(6): 86
18 Park S A, Kim J G, He Y S, et al. Comparative study on the corrosion behavior of the cold rolled and hot rolled low-alloy steels containing copper and antimony in flue gas desulfurization environment [J]. Phys. Met. Metallogr., 2014, 115: 1285
doi: 10.1134/S0031918X14130201
19 Sun M H, Pang Y J, Du C W, et al. Optimization of Mo on the corrosion resistance of Cr-advanced weathering steel designed for tropical marine atmosphere [J]. Constr. Build. Mater., 2021, 302: 124346
doi: 10.1016/j.conbuildmat.2021.124346
20 Xu X X, Zhang T Y, Wu W, et al. Optimizing the resistance of Ni-advanced weathering steel to marine atmospheric corrosion with the addition of Al or Mo [J]. Constr. Build. Mater., 2021, 279: 122341
doi: 10.1016/j.conbuildmat.2021.122341
21 General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People's Republic of China. Corrosion of metals and alloys-Alternate immersion test in salt solution [S]. Beijing: Standards Press of China, 2005
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 金属和合金的腐蚀 盐溶液周浸试验 [S]. 北京: 中国标准出版社, 2005
22 Díaz I, Cano H, Lopesino P, et al. Five-year atmospheric corrosion of Cu, Cr and Ni weathering steels in a wide range of environments [J]. Corros. Sci., 2018, 141: 146
doi: 10.1016/j.corsci.2018.06.039
23 Guo T M, Zhang Y W, Qin J S, et al. Corrosion behavior of Q345q bridge steel in three simulated atmospheres [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 319
郭铁明, 张延文, 秦俊山 等. 桥梁钢Q345q在3种模拟大气环境中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2019, 39: 319
doi: 10.11902/1005.4537.2018.127
24 Luo R, Wu J, Liu X L, et al. Evolution of rust layers formed on Q235 and 09CuPCrNi-A steels during initial stage of field exposure in two sites of different environment [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 566
罗 睿, 吴 军, 柳鑫龙 等. Q235和09CuPCrNi-A钢在两种不同大气环境中腐蚀早期锈层演化研究 [J]. 中国腐蚀与防护学报, 2014, 34: 566
25 Wang Y, Mu X, Dong J H, et al. Insight into atmospheric corrosion evolution of mild steel in a simulated coastal atmosphere [J]. J. Mater. Sci. Technol., 2021, 76: 41
doi: 10.1016/j.jmst.2020.11.021
26 Zhao T L, Liu K, Li Q. Comparison of the rusting behaviors of S450EW weathering steel under continuous spray and wet/dry cycling [J]. Constr. Build. Mater., 2021, 309: 125211
doi: 10.1016/j.conbuildmat.2021.125211
27 Zhang Y, Liu J, Huang F, et al. Comparative study of corrosion resistance of three weathering steels for bridges in simulated marine atmospheric environment [J]. J. Wuhan Univ. Sci. Technol., 2018, 41: 401
张 宇, 刘 静, 黄 峰 等. 三种桥梁耐候钢在模拟海洋大气环境中的耐蚀性能比较 [J]. 武汉科技大学学报, 2018, 41: 401
28 Nishikata A, Zhu Q J, Tada E. Long-term monitoring of atmospheric corrosion at weathering steel bridges by an electrochemical impedance method [J]. Corros. Sci., 2014, 87: 80
doi: 10.1016/j.corsci.2014.06.007
29 Liu H X, Huang F, Yuan W, et al. Essential role of element Si in corrosion resistance of a bridge steel in chloride atmosphere [J]. Corros. Sci., 2020, 173: 108758
doi: 10.1016/j.corsci.2020.108758
30 Morcillo M, Díaz I, Chico B, et al. Weathering steels: from empirical development to scientific design. A review [J]. Corros. Sci., 2014, 83: 6
doi: 10.1016/j.corsci.2014.03.006
31 Seechurn Y, Surnam B Y R, Wharton J A. Marine atmospheric corrosion of carbon steel in the tropical microclimate of Port Louis [J]. Mater. Corros., 2022, 73: 1474
32 Zhang Y, Huang F, Hu Q, et al. Effect of micro-phase electrochemical activity on the initial corrosion dynamics of weathering steel [J]. Mater. Chem. Phys., 2020, 241: 122045
doi: 10.1016/j.matchemphys.2019.122045
33 Shi J, Hu X W, Zhang D L, et al. Influence of microstructure on corrosion resistance of high strength weathering steel [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 721
石 践, 胡学文, 张道刘 等. 显微组织对高强耐候钢腐蚀性能的影响研究 [J]. 中国腐蚀与防护学报, 2021, 41: 721
[1] SHANG Ting, JIANG Guangrui, LIU Guanghui, QIN Hancheng. Effect of Heat Treatment Process on Microstructure and Corrosion Resistance of Zn-6%Al-3%Mg Coating[J]. 中国腐蚀与防护学报, 2023, 43(6): 1413-1418.
[2] XIAO Wentao, LIU Jing, PENG Jingjing, ZHANG Xian, WU Kaiming. Corrosion Resistance of Two Arc Spraying Coatings on EH36 Steel in Neutral Salt Spray Environment[J]. 中国腐蚀与防护学报, 2023, 43(5): 1003-1014.
[3] HU Jiezhen, LAN Wenjie, DENG Peichang, WU Jingquan, ZENG Junhao. Corrosion Behavior of E690 Steel in Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2023, 43(5): 1140-1144.
[4] YANG Haifeng, YUAN Zhizhong, LI Jian, ZHOU Naipeng, GAO Feng. Effect of Ni Content on Corrosion Behavior of Cu-bearing Aged Weldable Steels in a Simulated Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2023, 43(5): 1022-1030.
[5] CHEN Xiaohan, BAI Yang, WANG Zhichao, CHEN Congzong, ZHANG Yong, CUI Xianlin, ZUO Juanjuan, WANG Tongliang. Preparation and Corrosion Resistance of Surface Tolerant Epoxy Anti-corrosion Primer[J]. 中国腐蚀与防护学报, 2023, 43(5): 1126-1132.
[6] DING Li, ZOU Wenjie, ZHANG Xuejiao, CHEN Jun. Silicon-Zirconium Composite Conversion Film on ADC12 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2023, 43(4): 903-910.
[7] LIU Chao, CHEN Tianqi, LI Xiaogang. Research Progress on Initiation Mechanism of Local Corrosion Induced by Inclusions in Low Alloy Steel[J]. 中国腐蚀与防护学报, 2023, 43(4): 746-754.
[8] ZOU Wenjie, DING Li, ZHANG Xuejiao, CHEN Jun. Epoxy/Organosiloxane Modified Cationic Acrylic Emulsion Composite Coating[J]. 中国腐蚀与防护学报, 2023, 43(4): 922-928.
[9] XIAO Meng, WANG Qinying, ZHANG Xingshou, XI Yuchen, BAI Shulin, DONG Lijin, ZHANG Jin, YANG Junjie. Effect of Laser Quenching on Microstructure, Corrosion and Wear Behavior of AISI 4130 Steel[J]. 中国腐蚀与防护学报, 2023, 43(4): 713-724.
[10] WU Duoli, WU Haotian, SUN Hui, SHI Jianjun, WEI Xinlong, ZHANG Chao. Research Status and Development of Laser Cladding High Temperature Protective Coating[J]. 中国腐蚀与防护学报, 2023, 43(4): 725-736.
[11] WU Jiahao, WU Liang, YAO Wenhui, YUAN Yuan, XIE Zhihui, WANG Jingfeng, PAN Fusheng. Properties of Layered Dihydroxyl Metal (MgAlLa) Oxide Composite Coatings on Different Micro-arc Oxidation Surfaces of Mg-Gd-Y-Zn-Mn Alloy[J]. 中国腐蚀与防护学报, 2023, 43(4): 693-703.
[12] NI Ya, SHI Fangchang, QI Jiqiu. Effect of Ce on Microstructure and Corrosion Resistance of Zn-0.6Cu-0.3Ti Alloy[J]. 中国腐蚀与防护学报, 2023, 43(4): 803-811.
[13] HU Qian, GAO Jiayi, GUO Ruisheng, SHI Junqin, WANG Xianzong. Long-term Corrosion of Lubricant Infused Surface with Micro-nano Structures on Anodized Aluminum Oxide[J]. 中国腐蚀与防护学报, 2023, 43(4): 773-780.
[14] HU Yunfei, CAO Xiangkang, MA Xiaoze, PAN Jinglong, CAI Guangyi, DONG Zehua. Fluorescent Nanofiller Modified Epoxy Coatings for Visualization of Coating Degradation[J]. 中国腐蚀与防护学报, 2023, 43(3): 460-470.
[15] MAO Xuncong, CHEN Leping, PENG Cong. Effect of Chemical Conversion Coatings Ca-P and Sr-P on Corrosion Resistance of Mg-Zn-Zr-Gd Alloy Cast After Solidifying by Pulsed Magnetic Field[J]. 中国腐蚀与防护学报, 2023, 43(3): 647-655.
No Suggested Reading articles found!