|
|
Corrosion Behavior of a Novel Cu-Mo Weathering Steel in an Artificial Marine Atmosphere |
WANG Hanmin, HUANG Feng( ), YUAN Wei, ZHANG Jiawei, WANG Xinyu, LIU Jing |
Hubei Engineering Technology Research Center of Marine Materials and Service Safety, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China |
|
|
Abstract The long-term corrosion behavior of a novel Cu-Mo test steel in an artificial marine atmosphere was studied by means of dry-wet alternate periodic immersion test, field emission scanning electron microscopy (FE-SEM), field emission electron probe (FE-EPMA), X-ray diffractometer (XRD), Raman spectroscopy (Raman) and electrochemical test. The results show that the Cu-Mo test steel presents a microstructure composed mainly of polygonal ferrite and a small amount of lamellar pearlite, while the counterpart Cr-containing weathering steel presents a microstructure composed mainly of bainite and ferrite. The corrosion process of the Cu-Mo test steel can be divided into two stages: acceleration and deceleration. In the early stage of corrosion, the corrosion resistance of the Cu-Mo test steel is inferior to that of the ordinary Cr-containing weathering steel. At the later stage of corrosion, the enrichment of Cu and Mo occurred in the Cu-Mo test steel, thereby resulted in the increase of α-FeOOH, which enhanced the protectiveness of the rust layer, therefore the corrosion rate of the Cu-Mo test steel decreased. In a word, the new Cu-Mo test steel presents better weathering resistance rather than that of the ordinary Cr-containing weathering steel.
|
Received: 29 May 2022
32134.14.1005.4537.2022.170
|
|
Fund: Hubei Natural Science Foundation Science and Technology Innovation Group(2021CFA023) |
Corresponding Authors:
HUANG Feng, E-mail: huangfeng@wust.edu.cn
|
1 |
Liu H X, Huang F, Yuan W, et al. Corrosion behavior of 690 MPa grade high strength bainite steel in a simulated rural atmosphere [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 416
|
|
刘海霞, 黄 峰, 袁 玮 等. 690 MPa级高强贝氏体钢在模拟乡村大气中的腐蚀行为 [J]. 中国腐蚀与防护学报, 2020, 40: 416
doi: 10.11902/1005.4537.2020.002
|
2 |
Hao L, Zhang S X, Dong J H, et al. Atmospheric corrosion resistance of MnCuP weathering steel in simulated environments [J]. Corros. Sci., 2011, 53: 4187
doi: 10.1016/j.corsci.2011.08.028
|
3 |
Wang Y, Mu X, Chen Z Y, et al. Understanding the role of alloyed Cu and P in the initial rust composition of weathering steel formed in a simulated coastal-industrial atmosphere [J]. Corros. Sci., 2021, 193: 109912
doi: 10.1016/j.corsci.2021.109912
|
4 |
Zhang T Y, Xu X X, Li Y, et al. The function of Cr on the rust formed on weathering steel performed in a simulated tropical marine atmosphere environment [J]. Constr. Build. Mater., 2021, 277: 122298
doi: 10.1016/j.conbuildmat.2021.122298
|
5 |
Sun M H, Du C W, Liu Z Y, et al. Fundamental understanding on the effect of Cr on corrosion resistance of weathering steel in simulated tropical marine atmosphere [J]. Corros. Sci., 2021, 186: 109427
doi: 10.1016/j.corsci.2021.109427
|
6 |
Wu W, Cheng X Q, Zhao J B, et al. Benefit of the corrosion product film formed on a new weathering steel containing 3% nickel under marine atmosphere in Maldives [J]. Corros. Sci., 2020, 165: 108416
doi: 10.1016/j.corsci.2019.108416
|
7 |
Cheng X Q, Tian Y W, Li X G, et al. Corrosion behavior of nickel-containing weathering steel in simulated marine atmospheric environment [J]. Mater. Corros., 2014, 65: 1033
|
8 |
Wang F C, Zhao J B, Liu B, et al. Comparative study of rust layers on the advanced 3Ni steel, Q235 carbon steel and conventional weathering steel exposed to atmosphere environment of tropical islands [J]. Mater. Prot., 2020, 53(3): 8
|
|
王发仓, 赵晋斌, 刘 波 等. 新型3Ni钢和Q235碳钢、普通耐候钢在热带岛屿大气环境中暴晒后的锈层对比分析 [J]. 材料保护, 2020, 53(3): 8
|
9 |
Nishimura T. Electrochemical behaviour and structure of rust formed on Si- and Al-bearing steel after atmospheric exposure [J]. Corros. Sci., 2010, 52: 3609
doi: 10.1016/j.corsci.2010.07.006
|
10 |
Ahn S H, Park K J, Oh K N, et al. Effects of Sn and Sb on the corrosion resistance of AH 32 steel in a cargo oil tank environment [J]. Met. Mater. Int., 2015, 21: 865
doi: 10.1007/s12540-015-5164-5
|
11 |
Sun Y P, Wei X, Dong J H, et al. Understanding the role of alloyed Ni and Cu on improving corrosion resistance of low alloy steel in the simulated Beishan groundwater [J]. J. Mater. Sci. Technol., 2022, 130: 124
doi: 10.1016/j.jmst.2022.03.037
|
12 |
Zhang T Y, Liu W, Fan Y M, et al. Effect of synergistic action of Cu/Ni on corrosion resistance of low alloy steel in a simulated tropical marine atmosphere [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 511
|
|
张天翼, 柳 伟, 范玥铭 等. 海洋大气环境Cu/Ni协同作用对低合金钢耐蚀性影响 [J]. 中国腐蚀与防护学报, 2019, 39: 511
doi: 10.11902/1005.4537.2018.165
|
13 |
Wu W, Dai Z Y, Liu Z Y, et al. Synergy of Cu and Sb to enhance the resistance of 3%Ni weathering steel to marine atmospheric corrosion [J]. Corros. Sci., 2021, 183: 109353
doi: 10.1016/j.corsci.2021.109353
|
14 |
Sun M H, Yang X J, Du C W, et al. Distinct beneficial effect of Sn on the corrosion resistance of Cr-Mo low alloy steel [J]. J. Mater. Sci. Technol., 2021, 81: 175
doi: 10.1016/j.jmst.2020.12.014
|
15 |
Wang J J, Huang F, Zhou X J, et al. Relative function of effects of alloy elements on corrosion resistance of weathering steels in marine atmosphere [J]. Corros. Prot., 2015, 36: 58
|
|
王晶晶, 黄 峰, 周学俊 等. 合金元素对耐候钢在海洋大气中耐蚀性影响的交互作用 [J]. 腐蚀与防护, 2015, 36: 58
|
16 |
Hao L, Zhang S X, Dong J H, et al. A study of the evolution of rust on Mo-Cu-bearing fire-resistant steel submitted to simulated atmospheric corrosion [J]. Corros. Sci., 2012, 54: 244
doi: 10.1016/j.corsci.2011.09.023
|
17 |
Zhao B J, Zhao J J, Fan Y, et al. Corrosion behaviors of Mo-containing low alloy steels exposed in simulated acidic marine atmosphere environment [J]. Dev. Appl. Mater., 2019, 34(6): 86
|
|
赵柏杰, 赵俊杰, 范 益 等. 含Mo低合金钢在模拟酸性海洋大气环境中的腐蚀规律研究 [J]. 材料开发与应用, 2019, 34(6): 86
|
18 |
Park S A, Kim J G, He Y S, et al. Comparative study on the corrosion behavior of the cold rolled and hot rolled low-alloy steels containing copper and antimony in flue gas desulfurization environment [J]. Phys. Met. Metallogr., 2014, 115: 1285
doi: 10.1134/S0031918X14130201
|
19 |
Sun M H, Pang Y J, Du C W, et al. Optimization of Mo on the corrosion resistance of Cr-advanced weathering steel designed for tropical marine atmosphere [J]. Constr. Build. Mater., 2021, 302: 124346
doi: 10.1016/j.conbuildmat.2021.124346
|
20 |
Xu X X, Zhang T Y, Wu W, et al. Optimizing the resistance of Ni-advanced weathering steel to marine atmospheric corrosion with the addition of Al or Mo [J]. Constr. Build. Mater., 2021, 279: 122341
doi: 10.1016/j.conbuildmat.2021.122341
|
21 |
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People's Republic of China. Corrosion of metals and alloys-Alternate immersion test in salt solution [S]. Beijing: Standards Press of China, 2005
|
|
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 金属和合金的腐蚀 盐溶液周浸试验 [S]. 北京: 中国标准出版社, 2005
|
22 |
Díaz I, Cano H, Lopesino P, et al. Five-year atmospheric corrosion of Cu, Cr and Ni weathering steels in a wide range of environments [J]. Corros. Sci., 2018, 141: 146
doi: 10.1016/j.corsci.2018.06.039
|
23 |
Guo T M, Zhang Y W, Qin J S, et al. Corrosion behavior of Q345q bridge steel in three simulated atmospheres [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 319
|
|
郭铁明, 张延文, 秦俊山 等. 桥梁钢Q345q在3种模拟大气环境中的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2019, 39: 319
doi: 10.11902/1005.4537.2018.127
|
24 |
Luo R, Wu J, Liu X L, et al. Evolution of rust layers formed on Q235 and 09CuPCrNi-A steels during initial stage of field exposure in two sites of different environment [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 566
|
|
罗 睿, 吴 军, 柳鑫龙 等. Q235和09CuPCrNi-A钢在两种不同大气环境中腐蚀早期锈层演化研究 [J]. 中国腐蚀与防护学报, 2014, 34: 566
|
25 |
Wang Y, Mu X, Dong J H, et al. Insight into atmospheric corrosion evolution of mild steel in a simulated coastal atmosphere [J]. J. Mater. Sci. Technol., 2021, 76: 41
doi: 10.1016/j.jmst.2020.11.021
|
26 |
Zhao T L, Liu K, Li Q. Comparison of the rusting behaviors of S450EW weathering steel under continuous spray and wet/dry cycling [J]. Constr. Build. Mater., 2021, 309: 125211
doi: 10.1016/j.conbuildmat.2021.125211
|
27 |
Zhang Y, Liu J, Huang F, et al. Comparative study of corrosion resistance of three weathering steels for bridges in simulated marine atmospheric environment [J]. J. Wuhan Univ. Sci. Technol., 2018, 41: 401
|
|
张 宇, 刘 静, 黄 峰 等. 三种桥梁耐候钢在模拟海洋大气环境中的耐蚀性能比较 [J]. 武汉科技大学学报, 2018, 41: 401
|
28 |
Nishikata A, Zhu Q J, Tada E. Long-term monitoring of atmospheric corrosion at weathering steel bridges by an electrochemical impedance method [J]. Corros. Sci., 2014, 87: 80
doi: 10.1016/j.corsci.2014.06.007
|
29 |
Liu H X, Huang F, Yuan W, et al. Essential role of element Si in corrosion resistance of a bridge steel in chloride atmosphere [J]. Corros. Sci., 2020, 173: 108758
doi: 10.1016/j.corsci.2020.108758
|
30 |
Morcillo M, Díaz I, Chico B, et al. Weathering steels: from empirical development to scientific design. A review [J]. Corros. Sci., 2014, 83: 6
doi: 10.1016/j.corsci.2014.03.006
|
31 |
Seechurn Y, Surnam B Y R, Wharton J A. Marine atmospheric corrosion of carbon steel in the tropical microclimate of Port Louis [J]. Mater. Corros., 2022, 73: 1474
|
32 |
Zhang Y, Huang F, Hu Q, et al. Effect of micro-phase electrochemical activity on the initial corrosion dynamics of weathering steel [J]. Mater. Chem. Phys., 2020, 241: 122045
doi: 10.1016/j.matchemphys.2019.122045
|
33 |
Shi J, Hu X W, Zhang D L, et al. Influence of microstructure on corrosion resistance of high strength weathering steel [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 721
|
|
石 践, 胡学文, 张道刘 等. 显微组织对高强耐候钢腐蚀性能的影响研究 [J]. 中国腐蚀与防护学报, 2021, 41: 721
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|