Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (1): 62-68    DOI: 10.11902/1005.4537.2022.008
Current Issue | Archive | Adv Search |
Preparation and Corrosion Resistance of Ternary Layered Compound Cr2AlC Coating on 304 Stainless Steel for Bipolar Plates of PEMFC
LIU Yun, REN Yanjie(), CHEN Jian, ZHOU Libo, QIU Wei, HUANG Weiying, NIU Yan
Department of Energy and Power Engineering, Changsha University of Science and Technology, Changsha 410114, China
Download:  HTML  PDF(8145KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In this paper, Cr2AlC phase coatings were deposited on 304 stainless steel bipolar plates by DC magnetron sputtering. The morphology and microstructure of the coating were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) and its corrosion behavior in 0.01 mol/L H2SO4 solution was investigated by electrochemical methods. The results showed that the as-deposited Cr2AlC coating was compact and uniform, mainly composed of Cr2AlC phase. The corrosion current density of the coating was 2.43×10-7 A·cm-2, which was lower than that of 304 stainless steel by two orders of magnitude. After potentiostatic polarization at 600 and -240 mVSCE, the corresponding current densities were 2.44×10-8 and 2.3×10-7 A·cm-2, respectively. In addition, the impedance modulus of Cr2AlC coating in 0.01 mol/L H2SO4 solution was higher than 105 Ω·cm2, indicating that the coating could provide excellent protection for 304 stainless steel bipolar plate of PEMFC.

Key words:  PEMFC      Cr2AlC coatings      bipolar plate      corrosion resistance      stainless steel     
Received:  06 January 2022      32134.14.1005.4537.2022.008
ZTFLH:  TG172  
Fund: National Natural Science Foundation of China(51771034);Natural Science Foundation of Hunan Province(2020JJ4610);Graduate Scientific Research Innovation Project of CSUST(CX2020SS65)

Cite this article: 

LIU Yun, REN Yanjie, CHEN Jian, ZHOU Libo, QIU Wei, HUANG Weiying, NIU Yan. Preparation and Corrosion Resistance of Ternary Layered Compound Cr2AlC Coating on 304 Stainless Steel for Bipolar Plates of PEMFC. Journal of Chinese Society for Corrosion and protection, 2023, 43(1): 62-68.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.008     OR     https://www.jcscp.org/EN/Y2023/V43/I1/62

Fig.1  Surface (a, b) and cross-sectional (c) morphologies of Cr2AlC coating deposited on 304 stainless steel
Fig.2  XRD pattern of the Cr2AlC coating on 304 stainless steel
Fig.3  High-resolution XPS spectra of Cr2AlC coating deposited on 304 stainless steel: (a) C 1s, (b) O 1s, (c) Al 2p and (d) Cr 2p
Fig.4  Potentiodynamic polarization curves of 304 stainless steel without and with Cr2AlC coating in 0.01 mol/L H2SO4 solution
Fig.5  Potentiostatic polarization curves of 304 stainless steel with Cr2AlC coating at -240 mVSCE and 600 mVSCE
Fig.6  SEM surface images of Cr2AlC coated 304 stainless steel after potentiostatical polarization at -240 mVSCE (a) and 600 mVSCE (b) in 0.01 mol/L H2SO4 solution at room temperature
Fig.7  Open circuit potential-time curves for 304 stainless steel without and with Cr2AlC coating in 0.01 mol/L H2SO4 solution
Fig.8  Nyquist (a, d) and Bode (b, e) plots of 304 stainless steel (a, b) Cr2AlC coated 304 stainless steel (c, d) after immersion in 0.01 mol/L H2SO4 solution for different time, equivalent circuits for fitting impedance diagrams of 304 stainless steel without (c) and with (f) Cr2AlC coating in 0.01 mol/L H2SO4 solution (symbol: experimental data; line: fitted data)
Time / hRs / Ω·cm2CPE1Rct / Ω·cm2
Ydl / S Ω-1 cm-2n
239.621.053×10-30.877195.7
842.191.869×10-30.893126.9
4847.458.892×10-30.96376.33
9669.762.118×10-20.91171.48
Table 1  Fitting results of EIS of bare 304 stainless steel in 0.01 mol/L H2SO4 solution at room temperature
Time / hRs / Ω·cm2CPE1Rct / Ω·cm2CPE2Rf / Ω·cm2
Ydl / S Ω-1 cm-2ndlYf / S Ω-1 cm-2nf
2106.01.604×10-50.6764.228×1055.565×1050.9391.900×105
8152.81.116×10-50.6736.316×1056.675×1050.9422.799×105
48141.13.687×10-50.8721.841×1065.141×1050.98559.27
96165.03.299×10-50.8802.600×1065.984×1050.975100.50
264130.84.116×10-50.9361.122×1068.114×1050.96085.28
432131.47.643×10-50.9422.877×1055.363×1050.94741.01
Table 2  Fitting results of EIS of Cr2AlC coated 304 stainless steel in 0.01 mol/L H2SO4 solution at room temperature
Fig.9  Surface morphology of Cr2AlC coated 304 stainless steel after immersion for 432 h in 0.01 mol/L H2SO4 solution
1 Yi P Y, Zhang D, Qiu D K, et al. Carbon-based coatings for metallic bipolar plates used in proton exchange membrane fuel cells [J]. Int. J. Hydrogen Energy, 2019, 44: 6813
doi: 10.1016/j.ijhydene.2019.01.176
2 Tan Q Y, Wang Y L. Research progress on corrosion behavior and surface protection of stainless steel bipolar plate of proton exchange membrane fuel cell [J]. Surf. Technol., 2021, 50(8): 192
谭茜匀, 王艳丽. 质子交换膜燃料电池不锈钢双极板的腐蚀行为及其表面防护的研究进展 [J]. 表面技术, 2021, 50(8): 192
3 Lee S H, Woo S P, Kakati N, et al. Corrosion and electrical properties of carbon/ceramic multilayer coated on stainless steel bipolar plates [J]. Surf. Coat. Technol., 2016, 303: 162
doi: 10.1016/j.surfcoat.2016.03.072
4 Jin J, Liu H J, Zheng D C, et al. Effects of Mo content on the interfacial contact resistance and corrosion properties of CrN coatings on SS316L as bipolar plates in simulated PEMFCs environment [J]. Int. J. Hydrogen Energy, 2018, 43: 10048
doi: 10.1016/j.ijhydene.2018.04.044
5 Han Y T, Zhang P C, Shi J F, et al. Surface modification of TA1 bipolar plate for proton exchange membrane fuel cell [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 125
韩月桐, 张鹏超, 史杰夫 等. 质子交换膜燃料电池中TA1双极板的表面改性研究 [J]. 中国腐蚀与防护学报, 2021, 41: 125
6 Lv J L, Liang T X, Wang C. Comparison of corrosion behavior between coarse grained and nanocrystalline Ni-Fe alloys in chloride solutions and proton exchange membrane fuel cell environment by EIS, XPS and Raman spectra techniques [J]. Energy, 2016, 112: 67
doi: 10.1016/j.energy.2016.06.060
7 Joseph S, McClure J C, Chianelli R, et al. Conducting polymer-coated stainless steel bipolar plates for proton exchange membrane fuel cells (PEMFC) [J]. Int. J. Hydrogen Energy, 2005, 30: 1339
doi: 10.1016/j.ijhydene.2005.04.011
8 Lucio García M A, Smit M A. Study of electrodeposited polypyrrole coatings for the corrosion protection of stainless steel bipolar plates for the PEM fuel cell [J]. J. Power Sources, 2006, 158: 397
doi: 10.1016/j.jpowsour.2005.09.037
9 Chen Z H, Zhang G H, Yang W Z, et al. Superior conducting polypyrrole anti-corrosion coating containing functionalized carbon powders for 304 stainless steel bipolar plates in proton exchange membrane fuel cells [J]. Chem. Eng. J., 2020, 393: 124675
doi: 10.1016/j.cej.2020.124675
10 Ren Y J, Zeng C L. Effect of conducting composite polypyrrole/polyaniline coatings on the corrosion resistance of type 304 stainless steel for bipolar plates of proton-exchange membrane fuel cells [J]. J. Power Sources, 2008, 182: 524
doi: 10.1016/j.jpowsour.2008.04.056
11 Bertrand G, Mahdjoub H, Meunier C. A study of the corrosion behaviour and protective quality of sputtered chromium nitride coatings [J]. Surf. Coat. Technol., 2000, 126: 199
doi: 10.1016/S0257-8972(00)00527-2
12 Wang Y, Northwood D O. An investigation into TiN-coated 316L stainless steel as a bipolar plate material for PEM fuel cells [J]. J. Power Sources, 2007, 165: 293
doi: 10.1016/j.jpowsour.2006.12.034
13 Zhang K, Sharma S. Site-selective, low-loading, Au nanoparticle-polyaniline hybrid coatings with enhanced corrosion resistance and conductivity for fuel cells [J]. ACS Sustainable Chem. Eng., 2017, 5: 277
doi: 10.1021/acssuschemeng.6b01504
14 Feng K, Li Z G, Cai X, et al. Silver implanted 316L stainless steel as bipolar plates in polymer electrolyte membrane fuel cells [J]. Mater. Chem. Phys., 2011, 126: 6
doi: 10.1016/j.matchemphys.2010.11.029
15 Wind J, Späh R, Kaiser W, et al. Metallic bipolar plates for PEM fuel cells [J]. J. Power Sources, 2002, 105: 256
doi: 10.1016/S0378-7753(01)00950-8
16 Hentall P L, Lakeman J B, Mepsted G O, et al. New materials for polymer electrolyte membrane fuel cell current collectors [J]. J. Power Sources, 1999, 80: 235
doi: 10.1016/S0378-7753(98)00264-X
17 Walter C, Sigumonrong D P, El-Raghy T, et al. Towards large area deposition of Cr2AlC on steel [J]. Thin Solid Films, 2006, 515: 389
doi: 10.1016/j.tsf.2005.12.219
18 Lu J L, Abbas N, Tang J N, et al. Synthesis and characterization of conductive ceramic MAX-phase coatings for metal bipolar plates in simulated PEMFC environments [J]. Corros. Sci., 2019, 158: 108106
doi: 10.1016/j.corsci.2019.108106
19 Lu J L, Abbas N, Tang J N, et al. Characterization of Ti3SiC2-coating on stainless steel bipolar plates in simulated proton exchange membrane fuel cell environments [J]. Electrochem. Commun., 2019, 105: 106490
doi: 10.1016/j.elecom.2019.106490
20 Li J J, Hu L F, Li F Z, et al. Variation of microstructure and composition of the Cr2AlC coating prepared by sputtering at 370 and 500 ℃ [J]. Surf. Coat. Technol., 2010, 204: 3838
doi: 10.1016/j.surfcoat.2010.04.067
21 Abdulkadhim A, to Baben M, Takahashi T, et al. Crystallization kinetics of amorphous Cr2AlC thin films [J]. Surf. Coat. Technol., 2011, 206: 599
doi: 10.1016/j.surfcoat.2011.06.003
22 Sharma P, Pandey O P. Non-isothermal oxidation kinetics of nano-laminated Cr2AlC MAX phase [J]. J. Alloy. Compd., 2019, 773: 872
doi: 10.1016/j.jallcom.2018.09.326
23 Vyas A, Shen Y G, Zhou Z F, et al. Nano-structured CrN/CN x multilayer films deposited by magnetron sputtering [J]. Compos. Sci. Technol., 2008, 68: 2922
doi: 10.1016/j.compscitech.2007.11.002
24 Zhang Z, Lim S H, Chai J W, et al. Plasma spray of Ti2AlC MAX phase powders: effects of process parameters on coatings' properties [J]. Surf. Coat. Technol., 2017, 325: 429
doi: 10.1016/j.surfcoat.2017.07.006
25 Li G, Xia L F. Structural characterization of TiC x films prepared by plasma based ion implantation [J]. Thin Solid Films, 2001, 396: 16
doi: 10.1016/S0040-6090(01)01227-5
26 Zhang Z, Nie Y G, Shen L, et al. Charge distribution in the single crystalline Ti2AlN thin films grown on MgO (111) substrates [J]. J. Phys. Chem. C, 2013, 117: 11656
doi: 10.1021/jp402373k
27 Zhang Z, Jin H M, Chai J W, et al. Temperature-dependent microstructural evolution of Ti2AlN thin films deposited by reactive magnetron sputtering [J]. Appl. Surf. Sci., 2016, 368: 88
doi: 10.1016/j.apsusc.2016.01.229
28 Healy M D, Smith D C, Rubiano R R, et al. Use of tetraneopentylchromium as a precursor for the organometallic chemical vapor deposition of chromium carbide: a Reinvestigation [J]. Chem. Mater., 1994, 6: 448
doi: 10.1021/cm00040a019
29 Mani S P, Kalaiarasan M, Ravichandran K, et al. Corrosion resistant and conductive TiN/TiAlN multilayer coating on 316L SS: a promising metallic bipolar plate for proton exchange membrane fuel cell [J]. J. Mater. Sci., 2021, 56: 10575
doi: 10.1007/s10853-020-05682-4
30 Wang Y L, Tan Q Y, Huang B. Synthesis and properties of novel N/Ta-co-doped TiO2 coating on titanium in simulated PEMFC environment [J]. J. Alloy. Compd., 2021, 879: 160470
doi: 10.1016/j.jallcom.2021.160470
31 Jin J, He Z, Zhao X H. Effect of Al content on the corrosion resistance and conductivity of metal nitride coating in the cathode environment of PEMFCs [J]. Mater. Chem. Phys., 2020, 245: 122739
doi: 10.1016/j.matchemphys.2020.122739
32 Pugal Mani S, Rajendran N. Corrosion and interfacial contact resistance behavior of electrochemically nitrided 316L SS bipolar plates for proton exchange membrane fuel cells [J]. Energy, 2017, 133: 1050
doi: 10.1016/j.energy.2017.05.086
33 Ren Y J, Anisur M R, Qiu W, et al. Degradation of graphene coated copper in simulated proton exchange membrane fuel cell environment: electrochemical impedance spectroscopy study [J]. J. Power Sources, 2017, 362: 366
doi: 10.1016/j.jpowsour.2017.07.041
[1] SHANG Ting, JIANG Guangrui, LIU Guanghui, QIN Hancheng. Effect of Heat Treatment Process on Microstructure and Corrosion Resistance of Zn-6%Al-3%Mg Coating[J]. 中国腐蚀与防护学报, 2023, 43(6): 1413-1418.
[2] REN Wankai, LIAN Zhouyang, ZHOU Kang, LUO Zhengwei, WEI Wuji, ZHANG Xueying. Influence of Ammonia Desulfurization Liquid Components on Localized Corrosion Development Stage of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(6): 1392-1398.
[3] SHANG Qiang, MAN Cheng, PANG Kun, CUI Zhongyu, DONG Chaofang, CUI Hongzhi. Mechanism of Post-heat Treatment on Intergranular Corrosion Behavior of SLM-316L Stainless Steel with Different Carbon Contents[J]. 中国腐蚀与防护学报, 2023, 43(6): 1273-1283.
[4] LI Min, HU Lingyue, HU Kefeng, SONG Yao, ZHANG Zequn, LI Zongxin, ZHANG Bowei, DONG Chaofang, WU Junsheng. Crevice Corrosion Behavior of 316L Stainless Steel in Deep-sea Environment[J]. 中国腐蚀与防护学报, 2023, 43(6): 1375-1382.
[5] XIAO Wentao, LIU Jing, PENG Jingjing, ZHANG Xian, WU Kaiming. Corrosion Resistance of Two Arc Spraying Coatings on EH36 Steel in Neutral Salt Spray Environment[J]. 中国腐蚀与防护学报, 2023, 43(5): 1003-1014.
[6] LI Jiayuan, ZENG Tianhao, LIU Youtong, WU Xiaochun. Corrosion Behavior of 4Cr16Mo Martensite Stainless Steel with 1% Cu Addition by Applied Stress[J]. 中国腐蚀与防护学报, 2023, 43(5): 1094-1100.
[7] YANG Haifeng, YUAN Zhizhong, LI Jian, ZHOU Naipeng, GAO Feng. Effect of Ni Content on Corrosion Behavior of Cu-bearing Aged Weldable Steels in a Simulated Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2023, 43(5): 1022-1030.
[8] LIU Wei. Asymmetric Surface Configuration for Electrochemical Noise Measurement on Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(5): 1151-1158.
[9] CHEN Xiaohan, BAI Yang, WANG Zhichao, CHEN Congzong, ZHANG Yong, CUI Xianlin, ZUO Juanjuan, WANG Tongliang. Preparation and Corrosion Resistance of Surface Tolerant Epoxy Anti-corrosion Primer[J]. 中国腐蚀与防护学报, 2023, 43(5): 1126-1132.
[10] MAO Feixiong, ZHOU Yuting, YAO Wenqing, SHEN Xiang, XIAO Long, LI Minghui. Growth Kinetics of Steady-state Passive Film on Type 304 Stainless Steel Based on Point Defect Model[J]. 中国腐蚀与防护学报, 2023, 43(4): 911-921.
[11] DING Li, ZOU Wenjie, ZHANG Xuejiao, CHEN Jun. Silicon-Zirconium Composite Conversion Film on ADC12 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2023, 43(4): 903-910.
[12] LIU Chao, CHEN Tianqi, LI Xiaogang. Research Progress on Initiation Mechanism of Local Corrosion Induced by Inclusions in Low Alloy Steel[J]. 中国腐蚀与防护学报, 2023, 43(4): 746-754.
[13] ZOU Wenjie, DING Li, ZHANG Xuejiao, CHEN Jun. Epoxy/Organosiloxane Modified Cationic Acrylic Emulsion Composite Coating[J]. 中国腐蚀与防护学报, 2023, 43(4): 922-928.
[14] XIAO Meng, WANG Qinying, ZHANG Xingshou, XI Yuchen, BAI Shulin, DONG Lijin, ZHANG Jin, YANG Junjie. Effect of Laser Quenching on Microstructure, Corrosion and Wear Behavior of AISI 4130 Steel[J]. 中国腐蚀与防护学报, 2023, 43(4): 713-724.
[15] WU Duoli, WU Haotian, SUN Hui, SHI Jianjun, WEI Xinlong, ZHANG Chao. Research Status and Development of Laser Cladding High Temperature Protective Coating[J]. 中国腐蚀与防护学报, 2023, 43(4): 725-736.
No Suggested Reading articles found!