Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (4): 693-703    DOI: 10.11902/1005.4537.2023.153
Current Issue | Archive | Adv Search |
Properties of Layered Dihydroxyl Metal (MgAlLa) Oxide Composite Coatings on Different Micro-arc Oxidation Surfaces of Mg-Gd-Y-Zn-Mn Alloy
WU Jiahao1, WU Liang1,2,3(), YAO Wenhui1,2,3, YUAN Yuan1,2,3, XIE Zhihui4, WANG Jingfeng1,2,3, PAN Fusheng1,2,3
1.National Engineering Research Center for Magnesium Alloys, College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
2.National Key Laboratory of Advanced Casting Technologies, Chongqing University, Chongqing 400044, China
3.State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044, China
4.Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
Download:  HTML  PDF(12433KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Micro-arc oxidation (MAO) surfaces were prepared on a Mg-Gd-Y-Zn-Mn alloy in four different electrolytes, namely aluminate/silicate (AS), aluminate/phosphate (AP), silicate/phosphate (SP) and aluminate/phosphate/silicate (APS), afterwards, on which films of layered dihydroxyl metal (MgAlLa) oxides (MgAlLa-LDHs) were in-situ grown to acquire the composite coating of MgAlLa-LDHs/MAOs. Then the effect of different MAO surfaces on the properties of the MgAlLa-LDHs/MAOs composite coatings were studied by means of field emission scanning electron microscopy (FE-SEM), X-ray diffractometer (XRD), energy dispersive spectrometer (EDS) and X-ray photoelectron spectroscopy (XPS), as well as measurements of potentiodynamic polarization, electrochemical impedance and hydrogen evolution etc. in terms of their morphology, microstructure, composition and corrosion behavior in 3.5%NaCl solution. The results show that the different MAO coatings present differences in morphology, phase constituents, number of phases, element distribution and pore size, which affect the in-situ growth of the subsequent MgAlLa-LDHs nanosheets, so that the shape, size and crystallinity of the MgAlLa-LDHs nanosheets are obviously different. In addition, the composite coatings of MgAlLa-LDHs/APS-MAO show excellent corrosion resistance with a corrosion current density 9.14×10-9 A·cm-2, which is about four orders of magnitude lower than that of the bare Mg-alloy substrate.

Key words:  micro-arc oxidation      layered double hydroxyl metal oxide      electrolyte      Mg-alloy      corrosion resistance     
Received:  10 May 2023      32134.14.1005.4537.2023.153
ZTFLH:  TG172  
Fund: National Natural Science Foundation of China(51971040);National Natural Science Foundation of China(52171101)
Corresponding Authors:  WU Liang,E-mail: wuliang@cqu.edu.cn   

Cite this article: 

WU Jiahao, WU Liang, YAO Wenhui, YUAN Yuan, XIE Zhihui, WANG Jingfeng, PAN Fusheng. Properties of Layered Dihydroxyl Metal (MgAlLa) Oxide Composite Coatings on Different Micro-arc Oxidation Surfaces of Mg-Gd-Y-Zn-Mn Alloy. Journal of Chinese Society for Corrosion and protection, 2023, 43(4): 693-703.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2023.153     OR     https://www.jcscp.org/EN/Y2023/V43/I4/693

Electrolyte systemNaAlO2Na3PO4Na2SiO3NaOH
AS6062
AP6602
PS0662
APS4442
Table 1  Specific compositions of different micro-arc oxidation electrolytes
Fig.1  Flow chart of composite coating preparation
Fig.2  XRD patterns of MAO coatings (a) and MAO/MgAlLa-LDHs composite coatings (b)
Fig.3  FT-IR spectra of MAO coatings (a) and MAO/MgAlLa-LDHs composite coatings (b)
Fig.4  SEM morphologies of MAO-AS (a1, a2), MAO-AP (b1, b2), MAO-SP (c1, c2), MAO-APS (d1, d2), MAO-AS-L (e1, e2), MAO-AP-L (f1, f2), MAO-SP-L (g1, g2) and MAO-APS-L (h1, h2) coatings
CoatingMgOAlLaPSiGdYN
MAO-AS39.945.97.8004.61.20.60
MAO-AP37.548.77.604.301.30.60
MAO-PS39.648.6004.35.21.50.80
MAO-APS35.647.07.304.14.11.20.70
MAO-AS-L38.448.48.0003.80.80.40.2
MAO-AP-L32.951.78.21.53.400.80.31.2
MAO-PS-L33.852.901.83.54.40.90.51.2
MAO-APS-L31.849.88.01.53.13.60.80.41.0
Table 2  EDS analysis results of MAO coatings and corresponding MAO/LDHs composite coatings
Fig.5  XPS spectra of MAO-AS-L (a, b), MAO-AP-L (c, d), MAO-PS-L (e, f) and MAO-APS-L (g, h) composite coatings
Fig.6  Potentiodynamic polarization curves of Mg alloy substrate, MAO coatings (a) and MAO/LDHs composite coatings (b) in 3.5%NaCl solution
SampleEcorr / VSCEIcorr / A·cm-2
Blank Mg-1.4694.34×10-5
MAO-AS-1.5627.15×10-6
MAO-AP-1.2981.22×10-7
MAO-SP-1.4016.55×10-7
MAO-APS-1.4044.83×10-8
MAO-AS-L-1.5381.05×10-6
MAO-AP-L-1.6642.39×10-8
MAO-SP-L-1.5698.47×10-8
MAO-APS-L-1.5599.14×10-9
Table 3  Fitting results of Ecorr and Icorr of the potentiodynamic polarization curves in Fig.6
Fig.7  Impedance module (a, c) and phase angle (b, d) plots of MAO coatings (a, b) and MAO/LDHs composite coatings (c, d) in 3.5% NaCl solution
Fig.8  Equivalent circuits used for fitting EIS data: (a) MAO-SP, MAO-APS, (b) MAO-AP, MAO-AS, (c) all MAO/LDHs composite coatings
Sample

Rout

Ω·cm2

Qout

S·s n ·cm-2

nout

Rinn

Ω·cm2

Qinn

S·s n ·cm-2

ninn

Rct

Ω·cm2

Cdl

S·s n ·cm-2

ndlχ2
MAO-AS1.23×1026.9×10-70.95.9×1032.6×10-60.7---2.9×10-4
MAO-AP8.3×1029.1×10-71.06.7×1034.8×10-70.9---2.4×10-4
MAO-SP1.3×1043.1×10-50.82.2×1049.2×10-70.8---1.1×10-4
MAO-APS1.3×1044.0×10-60.98.6×1041.8×10-50.6---8.1×10-4
MAO-AS-L3.3×1037.4×10-91.07.4×1033.8×10-81.01.3×1043.1×10-71.01.4×10-4
MAO-AP-L3.9×1041.1×10-90.81.2×1043.3×10-60.84.2×1053.3×10-60.53.3×10-4
MAO-SP-L1.4×1041.1×10-70.77.4×1053.5×10-70.71.6×1052.5×10-50.71.9×10-4
MAO-APS-L4.1×1045.2×10-80.78.5×1041.4×10-70.75.9×1053.7×10-60.63.3×10-4
Table 4  Fitting results of EIS plots in Fig.7
Fig.9  Hydrogen evolution data of MAO coatings (a) and MAO/LDHs composite coatings (b) during immersion in 3.5% NaCl solution
1 Zhang C, Wu L, Zhao Z L, et al. Effect of Al on the microstructure, corrosion behavior and mechanical properties of Mg-4Li [J]. Anti-Corros. Methods Mater., 2020, 67: 31
doi: 10.1108/ACMM-06-2019-2146
2 Orlov D, Ralston K D, Birbilis N, et al. Enhanced corrosion resistance of Mg alloy ZK60 after processing by integrated extrusion and equal channel angular pressing [J]. Acta Mater., 2011, 59: 6176
doi: 10.1016/j.actamat.2011.06.033
3 Wu L Y, Li H T. Effect of selective oxidation on corrosion behavior of Mg-Gd-Y-Zn-Zr alloy [J]. Corros. Sci., 2018, 142: 238
doi: 10.1016/j.corsci.2018.07.026
4 Chen X R, Wang H N, Le Q C, et al. The role of long‐period stacking ordered phase on the discharge and electrochemical behaviors of magnesium anode Mg‐Zn‐Y for the primary Mg‐air battery [J]. Int. J. Energy Res., 2020, 44: 8865
doi: 10.1002/er.v44.11
5 Chen J X, Zhang Y, Ibrahim M, et al. In vitro degradation and antibacterial property of a copper-containing micro-arc oxidation coating on Mg-2Zn-1Gd-0.5Zr alloy [J]. Colloids Surf., 2019, 179B: 77
6 Wang Z Q, Xu C X, Yang L J, et al. Microstructure and corrosion resistance of medical degradable Mg-2Y-1Zn-xZr alloy [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 113
王中琪, 许春香, 杨丽景 等. 医用可降解Mg-2Y-1Zn-xZr合金微观组织和耐蚀性能研究 [J]. 中国腐蚀与防护学报, 2022, 42: 113
doi: 10.11902/1005.4537.2021.014
7 Huang T, Xu C X, Yang L J, et al. Effect of Zr addition on microstructure and corrosion behavior of Mg-3Zn-1Y alloys [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 219
黄 涛, 许春香, 杨丽景 等. Zr含量对Mg-3Zn-1Y合金显微组织和腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 219
8 Atrens A, Song G L, Liu M, et al. Review of recent developments in the field of magnesium corrosion [J]. Adv. Eng. Mater., 2015, 17: 400
doi: 10.1002/adem.201400434
9 Yang X Y, Yang Y T, Lu X P, et al. Research Progress of Corrosion Inhibitor for Mg-alloy [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 435
杨欣宇, 杨云天, 卢小鹏 等. 镁合金缓蚀剂研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 435
doi: 10.11902/1005.4537.2021.295
10 Simchen F, Sieber M, Kopp A, et al. Introduction to plasma electrolytic oxidation—an overview of the process and applications [J]. Coatings, 2020, 10: 628
doi: 10.3390/coatings10070628
11 Chen Y, Lu X P, Lamaka S V, et al. Active protection of Mg alloy by composite PEO coating loaded with corrosion inhibitors [J]. Appl. Surf. Sci., 2020, 504: 144462
doi: 10.1016/j.apsusc.2019.144462
12 Barati Darband G, Aliofkhazraei M, Hamghalam P, et al. Plasma electrolytic oxidation of magnesium and its alloys: Mechanism, properties and applications [J]. J. Magnes. Alloy., 2017, 5: 74
doi: 10.1016/j.jma.2017.02.004
13 Chen Z N, Yong X Y, Chen X H. Micro-defects in Micro-arc Oxidation Coatings on Mg-alloys [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 1
陈振宁, 雍兴跃, 陈晓春. 镁合金微弧氧化膜中微缺陷问题研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 1
doi: 10.11902/1005.4537.2021.012
14 Nashrah N, Kamil M P, Yoon D K, et al. Formation mechanism of oxide layer on AZ31 Mg alloy subjected to micro-arc oxidation considering surface roughness [J]. Appl. Surf. Sci., 2019, 497: 143772
doi: 10.1016/j.apsusc.2019.143772
15 Liu Y X, Xu A Y. Characterization of pitting corrosion behavior of AZ91 Mg-alloy without and with MAO coating [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 1034
刘玉项, 徐安阳. AZ91镁合金和MAO涂层的点蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 1034
doi: 10.11902/1005.4537.2021.320
16 Chen Y, Yang Y G, Zhang W, et al. Influence of second phase on corrosion performance and formation mechanism of PEO coating on AZ91 Mg alloy [J]. J. Alloy. Compd., 2017, 718: 92
doi: 10.1016/j.jallcom.2017.05.010
17 Wei Z, Ma B J, Li L, et al. Effect of ultrasonic rolling pretreatment on corrosion resistance of micro-arc oxidation coating of Mg-alloy [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 117
魏 征, 马保吉, 李 龙 等. 镁合金表面超声滚压预处理对微弧氧化膜耐蚀性能的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 117
18 Lu X P, Blawert C, Huang Y D, et al. Plasma electrolytic oxidation coatings on Mg alloy with addition of SiO2 particles [J]. Electrochim. Acta, 2016, 187: 20
doi: 10.1016/j.electacta.2015.11.033
19 Rakoch A G, Monakhova E P, Khabibullina Z V, et al. Plasma electrolytic oxidation of AZ31 and AZ91 magnesium alloys: Comparison of coatings formation mechanism [J]. J. Magnes. Alloy., 2020, 8: 587
doi: 10.1016/j.jma.2020.06.002
20 Wang L, Chen L, Yan Z C, et al. The influence of additives on the stability behavior of electrolyte, discharges and PEO films characteristics [J]. J. Alloy. Compd., 2010, 493: 445
doi: 10.1016/j.jallcom.2009.12.123
21 Bouali A C, Serdechnova M, Blawert C, et al. Layered double hydroxides (LDHs) as functional materials for the corrosion protection of aluminum alloys: A review [J]. Appl. Mater. Today, 2020, 21: 100857
22 Guo X, Zhang F ZX, Evans D G, et al. Layered double hydroxide films: synthesis, properties and applications [J]. Chem. Commun., 2010, 46: 5197
doi: 10.1039/c0cc00313a
23 Liu S H, Liu B, Xu D W, et al. Research progress on anti-corrosion coatings of layered double hydroxides [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 16
刘术辉, 刘 斌, 徐大伟 等. 层状双金属氢氧化物防腐蚀涂层材料的研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 16
doi: 10.11902/1005.4537.2021.021
24 Peng F, Wang D H, Zhang D D, et al. PEO/Mg-Zn-Al LDH composite coating on Mg alloy as a Zn/Mg Ion-release platform with multifunctions: enhanced corrosion resistance, osteogenic, and antibacterial activities [J]. ACS Biomater. Sci. Eng., 2018, 4: 4112
doi: 10.1021/acsbiomaterials.8b01184
25 Zhang X X, Zhang Y P, Lv Y, et al. Enhanced corrosion resistance of AZ31 Mg alloy by one-step formation of PEO/Mg-Al LDH composite coating [J]. Corros. Commun., 2022, 6: 67
doi: 10.1016/j.corcom.2022.05.001
26 Wang B, Li H Z, Dong Z H. Fabrication and corrosion resistance of MAO-LDH composite coating on AZ91 Mg alloy [J]. Mater. Prot., 2020, 53: 26
王 彪, 李汉周, 董泽华. 微弧氧化-水滑石复合涂层的制备及其在AZ91镁合金防腐蚀中的应用 [J]. 材料保护, 2020, 53: 26
27 Zheludkevich M L, Tedim J, Ferreira M G S. “Smart” coatings for active corrosion protection based on multi-functional micro and nanocontainers [J]. Electrochim. Acta, 2012, 82: 314
doi: 10.1016/j.electacta.2012.04.095
28 Wang X G, Gao K W, Yan L C, et al. Effect of Ce on corrosion resistance of films of ZnAlCe-layered double hydroxides on Mg-alloy [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 335
王晓鸽, 高克玮, 颜鲁春 等. Ce对镁合金表面ZnAlCe-LDHs薄膜耐腐蚀性能的影响机理研究 [J]. 中国腐蚀与防护学报, 2021, 41: 335
doi: 10.11902/1005.4537.2020.068
29 Wu L, Ding X X, Zheng Z C, et al. Doublely-doped Mg-Al-Ce-V2O7 4- LDH composite film on magnesium alloy AZ31 for anticorrosion [J]. J. Mater. Sci. Technol., 2021, 64: 66
doi: 10.1016/j.jmst.2019.09.031
30 Dai X, Wu L, Xia Y, et al. Intercalation of Y in Mg-Al layered double hydroxide films on anodized AZ31 and Mg-Y alloys to influence corrosion protective performance [J]. Appl. Surf. Sci., 2021, 551: 149432
doi: 10.1016/j.apsusc.2021.149432
31 Kamil M P, Kaseem M, Lee Y H, et al. Microstructural characteristics of oxide layer formed by plasma electrolytic oxidation: Nanocrystalline and amorphous structures [J]. J. Alloy. Compd., 2017, 707: 167
doi: 10.1016/j.jallcom.2017.01.051
32 Wang K, Wang J F, Dou X X, et al. Microstructure and mechanical properties of large-scale Mg-Gd-Y-Zn-Mn alloys prepared through semi-continuous casting [J]. J. Mater. Sci. Technol., 2020, 52: 72
doi: 10.1016/j.jmst.2020.04.013
33 Wei X X, Jin L, Dong S, et al. Effect of Zn/ (Gd + Y) ratio on the microstructure evolution and mechanical properties of Mg-Gd-Y-Zn-Zr alloy [J]. Mater. Charact., 2020, 169: 110670
doi: 10.1016/j.matchar.2020.110670
34 Wu J H, Wu L, Yao W H, et al. Effect of electrolyte systems on plasma electrolytic oxidation coatings characteristics on LPSO Mg-Gd-Y-Zn alloy [J]. Surf. Coat. Technol., 2023, 454: 129192
doi: 10.1016/j.surfcoat.2022.129192
35 Zhang G, Wu L, Tang A T, et al. Active corrosion protection by a smart coating based on a MgAl-layered double hydroxide on a cerium-modified plasma electrolytic oxidation coating on Mg alloy AZ31 [J]. Corros. Sci., 2018, 139: 370
doi: 10.1016/j.corsci.2018.05.010
36 Liu D, Han E-H, Song Y W, et al. Enhancing the self-healing property by adding the synergetic corrosion inhibitors of Na3PO4 and 2-mercaptobenzothiazole into the coating of Mg alloy [J]. Electrochim. Acta, 2019, 323: 134796
doi: 10.1016/j.electacta.2019.134796
37 Fattah-Alhosseini A, Chaharmahali R, Babaei K. Effect of particles addition to solution of plasma electrolytic oxidation (PEO) on the properties of PEO coatings formed on magnesium and its alloys: a review [J]. J. Magnes. Alloy., 2020, 8: 799
doi: 10.1016/j.jma.2020.05.001
38 Dehnavi V, Binns W J, Noël J J, et al. Growth behaviour of low-energy plasma electrolytic oxidation coatings on a magnesium alloy [J]. J. Magnes. Alloy., 2018, 6: 229
doi: 10.1016/j.jma.2018.05.008
39 Chen Y N, Wu L, Yao W H, et al. In situ growth of Mg-Zn-Al LDHs by ZIF-8 carrying Zn source and micro-arc oxidation integrated coating for corrosion and protection of magnesium alloys [J]. Surf. Coat. Technol., 2022, 451: 129032
doi: 10.1016/j.surfcoat.2022.129032
40 Chen Y N, Wu L, Yao W H, et al. One-step in situ synthesis of graphene oxide/MgAl-layered double hydroxide coating on a micro-arc oxidation coating for enhanced corrosion protection of magnesium alloys [J]. Surf. Coat. Technol., 2021, 413: 127083
doi: 10.1016/j.surfcoat.2021.127083
41 Chen Y N, Wu L, Yao W H, et al. A self-healing corrosion protection coating with graphene oxide carrying 8-hydroxyquinoline doped in layered double hydroxide on a micro-arc oxidation coating [J]. Corros. Sci., 2022, 194: 109941
doi: 10.1016/j.corsci.2021.109941
42 Wang D D, Liu X T, Wang Y, et al. Role of the electrolyte composition in establishing plasma discharges and coating growth process during a micro-arc oxidation [J]. Surf. Coat. Technol., 2020, 402: 126349
doi: 10.1016/j.surfcoat.2020.126349
43 Chen Y N, Wu L, Yao W H, et al. Synergistic effect of graphene oxide/ ternary Mg-Al-La layered double hydroxide for dual self-healing corrosion protection of micro-arc oxide coating of magnesium alloy [J]. Colloid Surf. A, 2022, 655A: 130339
44 Montemor M F, Snihirova D V, Taryba M G, et al. Evaluation of self-healing ability in protective coatings modified with combinations of layered double hydroxides and cerium molibdate nanocontainers filled with corrosion inhibitors [J]. Electrochim. Acta, 2012, 60: 31
doi: 10.1016/j.electacta.2011.10.078
45 Serdechnova M, Salak A N, Barbosa F S, et al. Interlayer intercalation and arrangement of 2-mercaptobenzothiazolate and 1, 2, 3-benzotriazolate anions in layered double hydroxides: in situ X-ray diffraction study [J]. J. Solid State Chem., 2016, 233: 158
doi: 10.1016/j.jssc.2015.10.023
46 Chen Y N, Wu L, Yao W H, et al. Development of metal-organic framework (MOF) decorated graphene oxide/MgAl-layered double hydroxide coating via microstructural optimization for anti-corrosion micro-arc oxidation coatings of magnesium alloy [J]. J. Mater. Sci. Technol., 2022, 130: 12
doi: 10.1016/j.jmst.2022.03.039
47 Song G L, Atrens A, StJohn D. An hydrogen evolution method for the estimation of the corrosion rate of magnesium alloys [A]. MathaudhuS N, LuoA A, NeelamegghamN R, et al. Essential Readings in Magnesium Technology [M]. Cham: Springer International Publishing, 2016: 565
[1] DING Li, ZOU Wenjie, ZHANG Xuejiao, CHEN Jun. Silicon-Zirconium Composite Conversion Film on ADC12 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2023, 43(4): 903-910.
[2] LIU Chao, CHEN Tianqi, LI Xiaogang. Research Progress on Initiation Mechanism of Local Corrosion Induced by Inclusions in Low Alloy Steel[J]. 中国腐蚀与防护学报, 2023, 43(4): 746-754.
[3] ZOU Wenjie, DING Li, ZHANG Xuejiao, CHEN Jun. Epoxy/Organosiloxane Modified Cationic Acrylic Emulsion Composite Coating[J]. 中国腐蚀与防护学报, 2023, 43(4): 922-928.
[4] XIAO Meng, WANG Qinying, ZHANG Xingshou, XI Yuchen, BAI Shulin, DONG Lijin, ZHANG Jin, YANG Junjie. Effect of Laser Quenching on Microstructure, Corrosion and Wear Behavior of AISI 4130 Steel[J]. 中国腐蚀与防护学报, 2023, 43(4): 713-724.
[5] WU Duoli, WU Haotian, SUN Hui, SHI Jianjun, WEI Xinlong, ZHANG Chao. Research Status and Development of Laser Cladding High Temperature Protective Coating[J]. 中国腐蚀与防护学报, 2023, 43(4): 725-736.
[6] NI Ya, SHI Fangchang, QI Jiqiu. Effect of Ce on Microstructure and Corrosion Resistance of Zn-0.6Cu-0.3Ti Alloy[J]. 中国腐蚀与防护学报, 2023, 43(4): 803-811.
[7] HUANG Zhifeng, YONG Qiwen, FANG Rui, XIE Zhihui. Superhydrophobic and Corrosion-resistant Nickel-based Composite Coating on Magnesium Alloy[J]. 中国腐蚀与防护学报, 2023, 43(4): 755-764.
[8] HU Qian, GAO Jiayi, GUO Ruisheng, SHI Junqin, WANG Xianzong. Long-term Corrosion of Lubricant Infused Surface with Micro-nano Structures on Anodized Aluminum Oxide[J]. 中国腐蚀与防护学报, 2023, 43(4): 773-780.
[9] HU Yunfei, CAO Xiangkang, MA Xiaoze, PAN Jinglong, CAI Guangyi, DONG Zehua. Fluorescent Nanofiller Modified Epoxy Coatings for Visualization of Coating Degradation[J]. 中国腐蚀与防护学报, 2023, 43(3): 460-470.
[10] WANG Hanmin, HUANG Feng, YUAN Wei, ZHANG Jiawei, WANG Xinyu, LIU Jing. Corrosion Behavior of a Novel Cu-Mo Weathering Steel in an Artificial Marine Atmosphere[J]. 中国腐蚀与防护学报, 2023, 43(3): 507-515.
[11] MAO Xuncong, CHEN Leping, PENG Cong. Effect of Chemical Conversion Coatings Ca-P and Sr-P on Corrosion Resistance of Mg-Zn-Zr-Gd Alloy Cast After Solidifying by Pulsed Magnetic Field[J]. 中国腐蚀与防护学报, 2023, 43(3): 647-655.
[12] ZHANG Ergeng, YANG Lei, YANG Hu, LIANG Dandan, CHEN Qiang, ZHOU Qiong, HUANG Biao. Review on Research and Optimization of Corrosion Resistance of Thermal Sprayed Fe-based Amorphous Coatings[J]. 中国腐蚀与防护学报, 2023, 43(2): 399-407.
[13] ZHANG Xiaoli, XUN Maonian, LIANG Xiaohong, ZHANG Caili, HAN Peide. Precipitation of Second Phase and Its Effect on Corrosion Resistance of Ce-containing S31254 Super Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(2): 384-390.
[14] LIU Yun, REN Yanjie, CHEN Jian, ZHOU Libo, QIU Wei, HUANG Weiying, NIU Yan. Preparation and Corrosion Resistance of Ternary Layered Compound Cr2AlC Coating on 304 Stainless Steel for Bipolar Plates of PEMFC[J]. 中国腐蚀与防护学报, 2023, 43(1): 62-68.
[15] LV Xin, DENG Kunkun, WANG Cuiju, NIE Kaibo, SHI Quanxin, LIANG Wei. Effect of SiCp Size on Microstructure and Corrosion Properties of Cast AZ91 Mg-alloys[J]. 中国腐蚀与防护学报, 2023, 43(1): 135-142.
No Suggested Reading articles found!