|
|
Properties of Layered Dihydroxyl Metal (MgAlLa) Oxide Composite Coatings on Different Micro-arc Oxidation Surfaces of Mg-Gd-Y-Zn-Mn Alloy |
WU Jiahao1, WU Liang1,2,3( ), YAO Wenhui1,2,3, YUAN Yuan1,2,3, XIE Zhihui4, WANG Jingfeng1,2,3, PAN Fusheng1,2,3 |
1.National Engineering Research Center for Magnesium Alloys, College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China 2.National Key Laboratory of Advanced Casting Technologies, Chongqing University, Chongqing 400044, China 3.State Key Laboratory of Mechanical Transmission, Chongqing University, Chongqing 400044, China 4.Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China |
|
|
Abstract Micro-arc oxidation (MAO) surfaces were prepared on a Mg-Gd-Y-Zn-Mn alloy in four different electrolytes, namely aluminate/silicate (AS), aluminate/phosphate (AP), silicate/phosphate (SP) and aluminate/phosphate/silicate (APS), afterwards, on which films of layered dihydroxyl metal (MgAlLa) oxides (MgAlLa-LDHs) were in-situ grown to acquire the composite coating of MgAlLa-LDHs/MAOs. Then the effect of different MAO surfaces on the properties of the MgAlLa-LDHs/MAOs composite coatings were studied by means of field emission scanning electron microscopy (FE-SEM), X-ray diffractometer (XRD), energy dispersive spectrometer (EDS) and X-ray photoelectron spectroscopy (XPS), as well as measurements of potentiodynamic polarization, electrochemical impedance and hydrogen evolution etc. in terms of their morphology, microstructure, composition and corrosion behavior in 3.5%NaCl solution. The results show that the different MAO coatings present differences in morphology, phase constituents, number of phases, element distribution and pore size, which affect the in-situ growth of the subsequent MgAlLa-LDHs nanosheets, so that the shape, size and crystallinity of the MgAlLa-LDHs nanosheets are obviously different. In addition, the composite coatings of MgAlLa-LDHs/APS-MAO show excellent corrosion resistance with a corrosion current density 9.14×10-9 A·cm-2, which is about four orders of magnitude lower than that of the bare Mg-alloy substrate.
|
Received: 10 May 2023
32134.14.1005.4537.2023.153
|
|
Fund: National Natural Science Foundation of China(51971040);National Natural Science Foundation of China(52171101) |
Corresponding Authors:
WU Liang,E-mail: wuliang@cqu.edu.cn
|
1 |
Zhang C, Wu L, Zhao Z L, et al. Effect of Al on the microstructure, corrosion behavior and mechanical properties of Mg-4Li [J]. Anti-Corros. Methods Mater., 2020, 67: 31
doi: 10.1108/ACMM-06-2019-2146
|
2 |
Orlov D, Ralston K D, Birbilis N, et al. Enhanced corrosion resistance of Mg alloy ZK60 after processing by integrated extrusion and equal channel angular pressing [J]. Acta Mater., 2011, 59: 6176
doi: 10.1016/j.actamat.2011.06.033
|
3 |
Wu L Y, Li H T. Effect of selective oxidation on corrosion behavior of Mg-Gd-Y-Zn-Zr alloy [J]. Corros. Sci., 2018, 142: 238
doi: 10.1016/j.corsci.2018.07.026
|
4 |
Chen X R, Wang H N, Le Q C, et al. The role of long‐period stacking ordered phase on the discharge and electrochemical behaviors of magnesium anode Mg‐Zn‐Y for the primary Mg‐air battery [J]. Int. J. Energy Res., 2020, 44: 8865
doi: 10.1002/er.v44.11
|
5 |
Chen J X, Zhang Y, Ibrahim M, et al. In vitro degradation and antibacterial property of a copper-containing micro-arc oxidation coating on Mg-2Zn-1Gd-0.5Zr alloy [J]. Colloids Surf., 2019, 179B: 77
|
6 |
Wang Z Q, Xu C X, Yang L J, et al. Microstructure and corrosion resistance of medical degradable Mg-2Y-1Zn-xZr alloy [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 113
|
|
王中琪, 许春香, 杨丽景 等. 医用可降解Mg-2Y-1Zn-xZr合金微观组织和耐蚀性能研究 [J]. 中国腐蚀与防护学报, 2022, 42: 113
doi: 10.11902/1005.4537.2021.014
|
7 |
Huang T, Xu C X, Yang L J, et al. Effect of Zr addition on microstructure and corrosion behavior of Mg-3Zn-1Y alloys [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 219
|
|
黄 涛, 许春香, 杨丽景 等. Zr含量对Mg-3Zn-1Y合金显微组织和腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 219
|
8 |
Atrens A, Song G L, Liu M, et al. Review of recent developments in the field of magnesium corrosion [J]. Adv. Eng. Mater., 2015, 17: 400
doi: 10.1002/adem.201400434
|
9 |
Yang X Y, Yang Y T, Lu X P, et al. Research Progress of Corrosion Inhibitor for Mg-alloy [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 435
|
|
杨欣宇, 杨云天, 卢小鹏 等. 镁合金缓蚀剂研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 435
doi: 10.11902/1005.4537.2021.295
|
10 |
Simchen F, Sieber M, Kopp A, et al. Introduction to plasma electrolytic oxidation—an overview of the process and applications [J]. Coatings, 2020, 10: 628
doi: 10.3390/coatings10070628
|
11 |
Chen Y, Lu X P, Lamaka S V, et al. Active protection of Mg alloy by composite PEO coating loaded with corrosion inhibitors [J]. Appl. Surf. Sci., 2020, 504: 144462
doi: 10.1016/j.apsusc.2019.144462
|
12 |
Barati Darband G, Aliofkhazraei M, Hamghalam P, et al. Plasma electrolytic oxidation of magnesium and its alloys: Mechanism, properties and applications [J]. J. Magnes. Alloy., 2017, 5: 74
doi: 10.1016/j.jma.2017.02.004
|
13 |
Chen Z N, Yong X Y, Chen X H. Micro-defects in Micro-arc Oxidation Coatings on Mg-alloys [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 1
|
|
陈振宁, 雍兴跃, 陈晓春. 镁合金微弧氧化膜中微缺陷问题研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 1
doi: 10.11902/1005.4537.2021.012
|
14 |
Nashrah N, Kamil M P, Yoon D K, et al. Formation mechanism of oxide layer on AZ31 Mg alloy subjected to micro-arc oxidation considering surface roughness [J]. Appl. Surf. Sci., 2019, 497: 143772
doi: 10.1016/j.apsusc.2019.143772
|
15 |
Liu Y X, Xu A Y. Characterization of pitting corrosion behavior of AZ91 Mg-alloy without and with MAO coating [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 1034
|
|
刘玉项, 徐安阳. AZ91镁合金和MAO涂层的点蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 1034
doi: 10.11902/1005.4537.2021.320
|
16 |
Chen Y, Yang Y G, Zhang W, et al. Influence of second phase on corrosion performance and formation mechanism of PEO coating on AZ91 Mg alloy [J]. J. Alloy. Compd., 2017, 718: 92
doi: 10.1016/j.jallcom.2017.05.010
|
17 |
Wei Z, Ma B J, Li L, et al. Effect of ultrasonic rolling pretreatment on corrosion resistance of micro-arc oxidation coating of Mg-alloy [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 117
|
|
魏 征, 马保吉, 李 龙 等. 镁合金表面超声滚压预处理对微弧氧化膜耐蚀性能的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 117
|
18 |
Lu X P, Blawert C, Huang Y D, et al. Plasma electrolytic oxidation coatings on Mg alloy with addition of SiO2 particles [J]. Electrochim. Acta, 2016, 187: 20
doi: 10.1016/j.electacta.2015.11.033
|
19 |
Rakoch A G, Monakhova E P, Khabibullina Z V, et al. Plasma electrolytic oxidation of AZ31 and AZ91 magnesium alloys: Comparison of coatings formation mechanism [J]. J. Magnes. Alloy., 2020, 8: 587
doi: 10.1016/j.jma.2020.06.002
|
20 |
Wang L, Chen L, Yan Z C, et al. The influence of additives on the stability behavior of electrolyte, discharges and PEO films characteristics [J]. J. Alloy. Compd., 2010, 493: 445
doi: 10.1016/j.jallcom.2009.12.123
|
21 |
Bouali A C, Serdechnova M, Blawert C, et al. Layered double hydroxides (LDHs) as functional materials for the corrosion protection of aluminum alloys: A review [J]. Appl. Mater. Today, 2020, 21: 100857
|
22 |
Guo X, Zhang F ZX, Evans D G, et al. Layered double hydroxide films: synthesis, properties and applications [J]. Chem. Commun., 2010, 46: 5197
doi: 10.1039/c0cc00313a
|
23 |
Liu S H, Liu B, Xu D W, et al. Research progress on anti-corrosion coatings of layered double hydroxides [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 16
|
|
刘术辉, 刘 斌, 徐大伟 等. 层状双金属氢氧化物防腐蚀涂层材料的研究进展 [J]. 中国腐蚀与防护学报, 2022, 42: 16
doi: 10.11902/1005.4537.2021.021
|
24 |
Peng F, Wang D H, Zhang D D, et al. PEO/Mg-Zn-Al LDH composite coating on Mg alloy as a Zn/Mg Ion-release platform with multifunctions: enhanced corrosion resistance, osteogenic, and antibacterial activities [J]. ACS Biomater. Sci. Eng., 2018, 4: 4112
doi: 10.1021/acsbiomaterials.8b01184
|
25 |
Zhang X X, Zhang Y P, Lv Y, et al. Enhanced corrosion resistance of AZ31 Mg alloy by one-step formation of PEO/Mg-Al LDH composite coating [J]. Corros. Commun., 2022, 6: 67
doi: 10.1016/j.corcom.2022.05.001
|
26 |
Wang B, Li H Z, Dong Z H. Fabrication and corrosion resistance of MAO-LDH composite coating on AZ91 Mg alloy [J]. Mater. Prot., 2020, 53: 26
|
|
王 彪, 李汉周, 董泽华. 微弧氧化-水滑石复合涂层的制备及其在AZ91镁合金防腐蚀中的应用 [J]. 材料保护, 2020, 53: 26
|
27 |
Zheludkevich M L, Tedim J, Ferreira M G S. “Smart” coatings for active corrosion protection based on multi-functional micro and nanocontainers [J]. Electrochim. Acta, 2012, 82: 314
doi: 10.1016/j.electacta.2012.04.095
|
28 |
Wang X G, Gao K W, Yan L C, et al. Effect of Ce on corrosion resistance of films of ZnAlCe-layered double hydroxides on Mg-alloy [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 335
|
|
王晓鸽, 高克玮, 颜鲁春 等. Ce对镁合金表面ZnAlCe-LDHs薄膜耐腐蚀性能的影响机理研究 [J]. 中国腐蚀与防护学报, 2021, 41: 335
doi: 10.11902/1005.4537.2020.068
|
29 |
Wu L, Ding X X, Zheng Z C, et al. Doublely-doped Mg-Al-Ce-V2O7 4- LDH composite film on magnesium alloy AZ31 for anticorrosion [J]. J. Mater. Sci. Technol., 2021, 64: 66
doi: 10.1016/j.jmst.2019.09.031
|
30 |
Dai X, Wu L, Xia Y, et al. Intercalation of Y in Mg-Al layered double hydroxide films on anodized AZ31 and Mg-Y alloys to influence corrosion protective performance [J]. Appl. Surf. Sci., 2021, 551: 149432
doi: 10.1016/j.apsusc.2021.149432
|
31 |
Kamil M P, Kaseem M, Lee Y H, et al. Microstructural characteristics of oxide layer formed by plasma electrolytic oxidation: Nanocrystalline and amorphous structures [J]. J. Alloy. Compd., 2017, 707: 167
doi: 10.1016/j.jallcom.2017.01.051
|
32 |
Wang K, Wang J F, Dou X X, et al. Microstructure and mechanical properties of large-scale Mg-Gd-Y-Zn-Mn alloys prepared through semi-continuous casting [J]. J. Mater. Sci. Technol., 2020, 52: 72
doi: 10.1016/j.jmst.2020.04.013
|
33 |
Wei X X, Jin L, Dong S, et al. Effect of Zn/ (Gd + Y) ratio on the microstructure evolution and mechanical properties of Mg-Gd-Y-Zn-Zr alloy [J]. Mater. Charact., 2020, 169: 110670
doi: 10.1016/j.matchar.2020.110670
|
34 |
Wu J H, Wu L, Yao W H, et al. Effect of electrolyte systems on plasma electrolytic oxidation coatings characteristics on LPSO Mg-Gd-Y-Zn alloy [J]. Surf. Coat. Technol., 2023, 454: 129192
doi: 10.1016/j.surfcoat.2022.129192
|
35 |
Zhang G, Wu L, Tang A T, et al. Active corrosion protection by a smart coating based on a MgAl-layered double hydroxide on a cerium-modified plasma electrolytic oxidation coating on Mg alloy AZ31 [J]. Corros. Sci., 2018, 139: 370
doi: 10.1016/j.corsci.2018.05.010
|
36 |
Liu D, Han E-H, Song Y W, et al. Enhancing the self-healing property by adding the synergetic corrosion inhibitors of Na3PO4 and 2-mercaptobenzothiazole into the coating of Mg alloy [J]. Electrochim. Acta, 2019, 323: 134796
doi: 10.1016/j.electacta.2019.134796
|
37 |
Fattah-Alhosseini A, Chaharmahali R, Babaei K. Effect of particles addition to solution of plasma electrolytic oxidation (PEO) on the properties of PEO coatings formed on magnesium and its alloys: a review [J]. J. Magnes. Alloy., 2020, 8: 799
doi: 10.1016/j.jma.2020.05.001
|
38 |
Dehnavi V, Binns W J, Noël J J, et al. Growth behaviour of low-energy plasma electrolytic oxidation coatings on a magnesium alloy [J]. J. Magnes. Alloy., 2018, 6: 229
doi: 10.1016/j.jma.2018.05.008
|
39 |
Chen Y N, Wu L, Yao W H, et al. In situ growth of Mg-Zn-Al LDHs by ZIF-8 carrying Zn source and micro-arc oxidation integrated coating for corrosion and protection of magnesium alloys [J]. Surf. Coat. Technol., 2022, 451: 129032
doi: 10.1016/j.surfcoat.2022.129032
|
40 |
Chen Y N, Wu L, Yao W H, et al. One-step in situ synthesis of graphene oxide/MgAl-layered double hydroxide coating on a micro-arc oxidation coating for enhanced corrosion protection of magnesium alloys [J]. Surf. Coat. Technol., 2021, 413: 127083
doi: 10.1016/j.surfcoat.2021.127083
|
41 |
Chen Y N, Wu L, Yao W H, et al. A self-healing corrosion protection coating with graphene oxide carrying 8-hydroxyquinoline doped in layered double hydroxide on a micro-arc oxidation coating [J]. Corros. Sci., 2022, 194: 109941
doi: 10.1016/j.corsci.2021.109941
|
42 |
Wang D D, Liu X T, Wang Y, et al. Role of the electrolyte composition in establishing plasma discharges and coating growth process during a micro-arc oxidation [J]. Surf. Coat. Technol., 2020, 402: 126349
doi: 10.1016/j.surfcoat.2020.126349
|
43 |
Chen Y N, Wu L, Yao W H, et al. Synergistic effect of graphene oxide/ ternary Mg-Al-La layered double hydroxide for dual self-healing corrosion protection of micro-arc oxide coating of magnesium alloy [J]. Colloid Surf. A, 2022, 655A: 130339
|
44 |
Montemor M F, Snihirova D V, Taryba M G, et al. Evaluation of self-healing ability in protective coatings modified with combinations of layered double hydroxides and cerium molibdate nanocontainers filled with corrosion inhibitors [J]. Electrochim. Acta, 2012, 60: 31
doi: 10.1016/j.electacta.2011.10.078
|
45 |
Serdechnova M, Salak A N, Barbosa F S, et al. Interlayer intercalation and arrangement of 2-mercaptobenzothiazolate and 1, 2, 3-benzotriazolate anions in layered double hydroxides: in situ X-ray diffraction study [J]. J. Solid State Chem., 2016, 233: 158
doi: 10.1016/j.jssc.2015.10.023
|
46 |
Chen Y N, Wu L, Yao W H, et al. Development of metal-organic framework (MOF) decorated graphene oxide/MgAl-layered double hydroxide coating via microstructural optimization for anti-corrosion micro-arc oxidation coatings of magnesium alloy [J]. J. Mater. Sci. Technol., 2022, 130: 12
doi: 10.1016/j.jmst.2022.03.039
|
47 |
Song G L, Atrens A, StJohn D. An hydrogen evolution method for the estimation of the corrosion rate of magnesium alloys [A]. MathaudhuS N, LuoA A, NeelamegghamN R, et al. Essential Readings in Magnesium Technology [M]. Cham: Springer International Publishing, 2016: 565
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|