Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (5): 1015-1021    DOI: 10.11902/1005.4537.2022.318
Current Issue | Archive | Adv Search |
Effect of Environmental Factors on Material Transfer in Thin Liquid Film During Atmospheric Corrosion Process in Marine Environment
WANG Yang1, LIU Yuanhai2, MU Xianlian2, LIU Miaoran1(), WANG Jun1, LI Qiuping2, CHEN Chuan1
1.China National Electric Apparatus Research Institute Co., Ltd., State Key Laboratory of Environmental Adaptability for Industrial Products, Guangzhou 510300, China
2.China Special Vehicle Reserch Institute, Key Laboratory of Corrosion Protection and Control of Aviation Technology, Jingmen 448035, China
Download:  HTML  PDF(2462KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The occurrence of atmospheric corrosion is always companied initially with the formation of electrolyte film on the surface of metals, and then the corrosion process is affected by soluble substances such as oxygen from the surrounding environment and the nature of metals themselves. The process of atmospheric corrosion reaction relates to the phase transition of the gas, solid, and liquid substance, as well as the material transfer among different phases. This study simulated the atmospheric corrosion process of the pure copper plate in humid and hot environmental conditions as well as sea fog atmosphere by the multi-factor orthogonal corrosion test. The corrosion mechanism of copper plates beneath thin liquid films in steady state environment was also studied. By calculating the state changes of the thin liquid film with the variation of temperature, humidity and other environmental conditions, the migration process of dissolved oxygen within the thin liquid films of different thicknesses and Cl- concentrations was analyzed. The influence of environmental factors on the thin liquid film, electrolyte concentration, and corrosion kinetics was revealed eventually by comparing the experimental data and theoretical calculation results.

Key words:  atmospheric corrosion      environmental factor      material transfer      corrosion model      copper     
Received:  14 October 2022      32134.14.1005.4537.2022.318
ZTFLH:  TG171  
Corresponding Authors:  LIU Miaoran, E-mail: liumr@cei1958.com   

Cite this article: 

WANG Yang, LIU Yuanhai, MU Xianlian, LIU Miaoran, WANG Jun, LI Qiuping, CHEN Chuan. Effect of Environmental Factors on Material Transfer in Thin Liquid Film During Atmospheric Corrosion Process in Marine Environment. Journal of Chinese Society for Corrosion and protection, 2023, 43(5): 1015-1021.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.318     OR     https://www.jcscp.org/EN/Y2023/V43/I5/1015

No.T / °CRHCdep / g·m-2
16095%0.2
25085%0.2
36085%1
Table 1  Environmental conditions of atmospheric corrosion orthogonal experiment
Fig.1  Schematic drawing of experimental sample
Fig.2  Mass losses of Cu as a function of time under different environmental conditions
Fig.3  Corrosion rates of Cu as a function of time under different environmental conditions

Temperature

°C

Relative humidityAmount of salt deposition

Concentration

of NaCl

Density

kg·m-3

Salinity

mass

Liquid film thicknessOxygen solubility
g·m-2kmol·m-3μmmol·m-3
6095%0.21.0471024.2825.975%3.2680.0880
5085%0.23.1771109.08716.743%1.0770.0611
6085%13.1411103.06316.645%5.4460.0547
Table 2  Physical properties of NaCl solution under different environmental conditions
Fig.4  Schematic diagram of dissolution, diffusion and reaction of oxygen in electrolyte solution
Fig.5  Concentration distribution of oxygen in electrolyte solution
Fig.6  Calculated and measured data of corrosion rate of Cu after exposure for different time under different conditions
1 Soares C G, Garbatov Y, Zayed A, et al. Influence of environmental factors on corrosion of ship structures in marine atmosphere [J]. Corros. Sci., 2009, 51: 2014
doi: 10.1016/j.corsci.2009.05.028
2 Wan Y, Song F L, Li L J. Corrosion characteristics of carbon steel in simulated marine atmospheres [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 851
万 晔, 宋芳龄, 李立军. 基于海洋大气环境因素影响下的碳钢腐蚀特征研究 [J]. 中国腐蚀与防护学报, 2022, 42: 851
3 Rice D W, Peterson P, Rigby E B, et al. Atmospheric corrosion of copper and silver [J]. J. Electrochem. Soc., 1981, 128: 275
doi: 10.1149/1.2127403
4 Biezma M V, San Cristóbal J R. Methodology to study cost of corrosion [J]. Corros. Eng. Sci. Technol., 2005, 40: 344
doi: 10.1179/174327805X75821
5 Cui Z Y, Ge F, Wang X. Corrosion mechanism of materials in three typical harsh marine atmospheric environments [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 403
崔中雨, 葛 峰, 王 昕. 几种苛刻海洋大气环境下的海工材料腐蚀机制 [J]. 中国腐蚀与防护学报, 2022, 42: 403
doi: 10.11902/1005.4537.2021.165
6 Christofer L, Thomas E G. Atmospheric Corrosion [M]. Beijing: Chemical Industry Press, 1996
7 Ma X Z, Meng L D, Cao X K, et al. Influence of Co-deposition of pollutant particulates ammonium sulfate and sodium chloride on atmospheric corrosion of copper of printed circuit board [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 540
马小泽, 孟令东, 曹祥康 等. 大气污染物硫酸铵和氯化钠混合盐粒沉降对电路板铜大气腐蚀的加速机制 [J]. 中国腐蚀与防护学报, 2022, 42: 540
doi: 10.11902/1005.4537.2021.138
8 Wang X, Chen J H, Wang W. Review of study in hygroscopic properties of aerosol particles [J]. China Powder Sci. Technol., 2010, 16(1): 101
王 轩, 陈建华, 王 玮. 气溶胶吸湿特性研究现状 [J]. 中国粉体技术, 2010, 16(1): 101
9 State Administration for Market Regulation, Standardization Administration of the People's Republic of China. GB/T 19292.4-2018 Corrosion of metals and alloys—Corrosivity of atmospheres—Part 4: Determination of corrosion rate of standard specimens for the evaluation of corrosivity [S]. Beijing: Standards Press of China, 2018
国家市场监督管理总局, 中国国家标准化管理委员会. GB/T 19292.4-2018 金属和合金的腐蚀 大气腐蚀性 第4部分: 用于评估腐蚀性的标准试样的腐蚀速率的测定 [S]. 北京: 中国标准出版社, 2018
10 ISO 9224-2012 Corrosion of metals and alloys—Corrosivity of atmospheres—Guiding values for the corrosivity categories [S]. Geneva: ISO copyright office, 2012
11 China National Electric Apparatus Research Institute Co., Ltd. Prediction algorithm of metal atmospheric corrosion rate based on transmission dynamics model [P]. Chin Pat, 2020114294241, 2022
中国电器科学研究院股份有限公司. 基于物质传递动力学模型的金属大气腐蚀速率预测算法 [P]. 中国专利, 2020114294241, 2022
12 Xi H. Equation for calculating physical properties of sodium chloride solutions [J]. J. Tianjin Univ. Light Ind., 1997, (2): 74
席 华. 氯化钠溶液物性关系式 [J]. 天津轻工业学院学报, 1997, (2): 74
13 Cui X M, Wu Z M. Discrimination on concept of salt effect [J]. J. Salt Lake Res., 2013, 21(2): 62
崔香梅, 乌志明. 盐效应概念辨析 [J]. 盐湖研究, 2013, 21(2): 62
14 Ma C F, Tian R. The oxygen saturability of sea water and Weiss equation [J]. J. Ocean Technol., 2002, 21(1): 22
马传芳, 田 锐. 海水的氧饱和度与韦斯方程 [J]. 海洋技术, 2002, 21(1): 22
15 Shinzo O, Shiro Y, Fumio H, et al. Interaction between diffusion process and electrode reaction process under convection conditions [J]. Electrochemistry, 1957, 25: 562
16 Zhang J W. Study on the oxygen budgets of grass carp ponds and its critical impact factors [D]. Shanghai: Shanghai Ocean University, 2012
张敬旺. 草鱼养殖池塘溶氧收支平衡及关键影响因子的研究 [D]. 上海: 上海海洋大学, 2012
17 Nippon Steel Corp. Metal corrosion rate prediction method and metal corrosion life prediction system [P]. Jap. Pat., JP2012083140A, 2012
18 Frankel G S, Stratmann M, Rohwerder M, et al. Potential control under thin aqueous layers using a Kelvin Probe [J]. Corros. Sci., 2007, 49: 2021
doi: 10.1016/j.corsci.2006.10.017
19 Huang H L, Dong Z H, Chen Z Y, et al. The effects of Cl ion concentration and relative humidity on atmospheric corrosion behaviour of PCB-Cu under adsorbed thin electrolyte layer [J]. Corros. Sci., 2011, 53: 1230
doi: 10.1016/j.corsci.2010.12.018
20 Deng P C, Zhong J, Wang K, et al. Important influential factor for corrosion of high-altitude marine engineering equipment in atmosphere-chloride ion deposition rate [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 474
邓培昌, 钟 杰, 王 坤 等. 海洋工程装备高空腐蚀重要影响因素Cl-沉降速率研究 [J]. 中国腐蚀与防护学报, 2020, 40: 474
doi: 10.11902/1005.4537.2019.206
21 Vera R, Delgado D, Rosales B M. Effect of atmospheric pollutants on the corrosion of high power electrical conductors-Part 2. Pure copper [J]. Corros. Sci., 2007, 49: 2329
doi: 10.1016/j.corsci.2006.10.031
22 Vera R, Delgado D, Rosales B M. Effect of unusually elevated SO2 atmospheric content on the corrosion of high power electrical conductors-Part 3. Pure copper [J]. Corros. Sci., 2008, 50: 1080
doi: 10.1016/j.corsci.2007.11.017
[1] YANG Haifeng, YUAN Zhizhong, LI Jian, ZHOU Naipeng, GAO Feng. Effect of Ni Content on Corrosion Behavior of Cu-bearing Aged Weldable Steels in a Simulated Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2023, 43(5): 1022-1030.
[2] ZHOU Hao, YOU Shijie, WANG Shengli. Corrosion Behavior and Corrosion Inhibitor for Copper Artifacts in CO2 Environment[J]. 中国腐蚀与防护学报, 2023, 43(5): 1049-1056.
[3] HAO Wenkui, CHEN Xin, XU Lingling, HAN Yu, CHEN Yun, HUANG Luyao, ZHU Zhixiang, YANG Bingkun, WANG Xiaofang, ZHANG Qiang. Drawing of Atmospheric Corrosion Map of Carbon Steel and Galvanized Steel for Power Grid[J]. 中国腐蚀与防护学报, 2023, 43(4): 795-802.
[4] SHANG Xiaobiao, XIAO Renyou, LI Jiajian, ZHANG Zhihao. Improvement of Anode Corrosion Uniformity of Copper Electrolysis Cell Based on Multi-physical Field Coupling Theory[J]. 中国腐蚀与防护学报, 2023, 43(3): 663-670.
[5] LI Lemin, ZHANG Jie, BIAN Yafei, MIAO Chunhui, CHEN Guohong, TANG Wenming. Atmospheric Corrosion Characteristics and Regularity of the Q235, 40Cr Steels Commonly-used in Power Grid Equipment in Anhui Province[J]. 中国腐蚀与防护学报, 2023, 43(3): 535-543.
[6] CHEN Hanlin, MA Li, HUANG Guosheng, DU Min. Effects of pH Value, Temperature and Salinity on Film Formation of B30 Cu-Ni Alloy in Seawater[J]. 中国腐蚀与防护学报, 2023, 43(3): 481-493.
[7] ZHU Hao, CHENG Yi, SONG Xuan, ZHAO Wenxia, LI Xinwei, LIU Xin, HUI Kaihong, CHEN Huaijun, ZHAI Shilong. Effect of L-malic Acid and 2,2'-bidipyridine on Electroless Copper Plating in Potassium Sodium Tartrate System at Low Temperature[J]. 中国腐蚀与防护学报, 2023, 43(3): 544-552.
[8] XING Shaohua, LIU Jinzeng, BAI Shuyu, QIAN Yao, ZHANG Dalei, MA Li. Influence of Seawater Flow Speed on Galvanic Corrosion Behavior of B10/B30 Alloys Coupling[J]. 中国腐蚀与防护学报, 2023, 43(2): 391-398.
[9] GAO Yibin, DU Xiaogang, WANG Qiwei, ZHONG Liming, FU Wenhua, ZHANG Hanping, ZHANG Meng, JIANG Chunhai. Corrosion Behavior of Copper in a Simulated Grounding Condition in Electric Power Grid[J]. 中国腐蚀与防护学报, 2023, 43(2): 435-440.
[10] WANG Xiao, LIU Feng, LI Yan, ZHANG Wei, LI Xiangbo. Corrosion Behavior of B10 Cu-Ni Alloy Pipe in Static and Dynamic Seawater[J]. 中国腐蚀与防护学报, 2023, 43(1): 119-126.
[11] ZHOU Mengxin, WU Jun, FAN Zhibin, ZHOU Xuejie, CHEN Hao. Current Situation and Prospect of On-line Monitoring Technology for Atmospheric Corrosion Testing of Metallic Materials[J]. 中国腐蚀与防护学报, 2023, 43(1): 38-46.
[12] XIA Xiaojian, WAN Xinyuan, GAO Yan, WANG Qiwei, YAN Kanghua, CHEN Yunxiang, HONG Yicheng, ZHANG Junxi. Corrosion Characteristics of Atmospheric Corrosion of 1050 Al-alloy under Power-on Condition[J]. 中国腐蚀与防护学报, 2022, 42(6): 1065-1069.
[13] FAN Yi, YANG Wenxiu, WANG Jun, CAI Jiaxing, MA Hongchi. Corrosion Behavior of Q690qE Steel in a Simulated Coastal-industrial Environment[J]. 中国腐蚀与防护学报, 2022, 42(4): 669-674.
[14] MA Xiaoze, MENG Lingdong, CAO Xiangkang, XIAO Song, DONG Zehua. Influence of Co-deposition of Pollutant Particulates Ammonium Sulfate and Sodium Chloride on Atmospheric Corrosion of Copper of Printed Circuit Board[J]. 中国腐蚀与防护学报, 2022, 42(4): 540-550.
[15] CUI Zhongyu, GE Feng, WANG Xin. Corrosion Mechanism of Materials in Three Typical Harsh Marine Atmospheric Environments[J]. 中国腐蚀与防护学报, 2022, 42(3): 403-409.
No Suggested Reading articles found!