Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (5): 1003-1014    DOI: 10.11902/1005.4537.2022.284
Current Issue | Archive | Adv Search |
Corrosion Resistance of Two Arc Spraying Coatings on EH36 Steel in Neutral Salt Spray Environment
XIAO Wentao1, LIU Jing1(), PENG Jingjing1, ZHANG Xian1, WU Kaiming1,2()
1.Collaborative Innovation Center for Advanced Steels, The State Key Laboratory of Refractory Material and Metallurgy, Hubei Province Key Laboratory of Systems Science in Metallurgical Process, Wuhan University of Science and Technology, Wuhan 430081, China
2.Metals Valley & Band (Foshan) Metallic Composite Co. Ltd., Foshan 528000, China
Download:  HTML  PDF(23269KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The 5083 Al-alloy coating (5083 coating) and Zn15Al coating were prepared on the surface of EH36 steel by arc spraying technology, and the corrosion resistance of the two coatings in neutral salt spray environment was comparatively studied by means of mass loss method, electrochemical tests, SEM and XRD etc. The results show that, with the progress of corrosion, the corrosion rate of the two coatings gradually decreases, and the corrosion rate of 5083 Al-alloy coating is significantly lower than that of Zn15Al coating. The morphological observations show that the corrosion products of 5083 Al-alloy coatings are dense and blocky, and there is no obvious infiltration of Cl-. However, the corrosion products of Zn15Al coatings are loose and fine needle-like, and Cl- is deposited in the corrosion product layer after 10 d of salt spray corrosion and then gradually penetrates into the coating matrix. The corrosion products of 5083 Al-alloy coating are mainly Al(OH)3, and those of Zn15Al coating composed mainly of Zn(OH)2 and Zn5(OH)8Cl2·H2O. Taking the calculation results of the solubility product constant Kspand supersaturation into consideration, it follows that the deposition of Al(OH)3 requires a lower Al3+ concentration and presents a faster deposition rate. Therefore, the 5083 coating is more inclined to form a dense layer of corrosion products. This result is verified by the EIS test results. As corrosion time prolongs, the polarization resistance of the two coatings gradually increases, and the polarization resistance of the 5083 Al-alloy coating is higher than that of the Zn15Al coating, indicating that the densification of corrosion products is the main reason affecting the corrosion resistance of the two coatings.

Key words:  arc spray coating      Al-alloy coating      Zn15Al coating      corrosion resistances of salt spray     
Received:  14 September 2022      32134.14.1005.4537.2022.284
ZTFLH:  TG174  
Fund: Hubei Province Department of Education(D20221103);Hubei Province Key Laboratory of Systems Science in Metallurgical Process(Y202204)
Corresponding Authors:  LIU Jing, E-mail: liujing2015@wust.edu.cn;WU Kaiming, E-mail: wukaiming@wust.edu.cn   

Cite this article: 

XIAO Wentao, LIU Jing, PENG Jingjing, ZHANG Xian, WU Kaiming. Corrosion Resistance of Two Arc Spraying Coatings on EH36 Steel in Neutral Salt Spray Environment. Journal of Chinese Society for Corrosion and protection, 2023, 43(5): 1003-1014.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.284     OR     https://www.jcscp.org/EN/Y2023/V43/I5/1003

MaterialZnAlMgSiFeMnTi
5083 Al-alloy0.01897.272.530.0250.120.0260.011
Zn15Al86.4413.5390.0010.0050.0070.0040.004
Table 1  Chemical composition of wire
CoatingThickness / μm

Hardness HV0.3

kgf·mm-2

Binding strength / MPaPorosity / %
5083 Al-alloy195.3±10.543.32±1.3517.61±1.604.19±0.58
Zn15Al178.4±13.233.90±0.829.60±0.604.34±0.89
Table 2  Physical properties of 5083 Al alloy and Zn15Al coatings
Fig.1  Corrosion rates of two coatings in neutral salt spray (NSS) environment
Fig.2  Macroscopic surface corrosion morphologies of 5083 Al-alloy (a1-a8) and Zn15Al (b1-b8) coatings in NSS environment
Fig.3  Microscopic surface corrosion morphologies of 5083 Al-alloy (a1-a8) and Zn15Al (b1-b8) coatings in NSS environment
Fig.4  Cross-sectional morphologies of 5083 Al-alloy coatings after 0 d (a), 1 d (b), 2 d (c), 5 d (d), 10 d (e), 20 d (f), 30 d (g) and 100 d (h) corrosion in NSS environment
Fig.5  Cross-sectional morphologies of Zn15Al coatings after 0 d (a), 1 d (b), 2 d (c), 5 d (d), 10 d (e), 20 d (f), 30 d (g) and 100 d (h) corrosion in NSS environment
Coating1 d2 d5 d10 d20 d30 d100 d
5083---8.6312.1727.5241.8
Zn15Al-10.4313.8611.8715.6517.55223.03
Table 3  Thickness of corrosion products in NSS environment (μm)
Fig.6  XRD patterns of 5083 Al-alloy coating (a) and Zn15Al coating (b) after 100 d corrosion in NSS environment
Fig.7  EIS plots and equivalent circuit of 5083 Al-alloy coating: (a) Nyquist diagram, (b) Bode diagram, (c) equivalent circuit diagram for 1~2 d, (d) equivalent circuit diagram for 5~30 d
Fig.8  EIS plots and equivalent circuit of Zn15Al coating: (a) Nyquist diagram, (b) Bode diagram, (c) equivalent circuit diagram
t / d

Rs

Ω·cm2

Qc

S·cm-2·s n

Rc

Ω·cm2

Qct

S·cm-2·s n

Rct

Ω·cm2

Rp

Ω·cm2

11.0715.11×10-3286.51.41×10-267.23354.80
21.8522.44×10-32.5321.91×10-3122.2126.58
51.6063.11×10-30.16651.52×10-111231124.77
100.64912.35×10-324.626.6×10-412581283.27
200.59681.77×10-41.1632.46×10-315641565.76
303.1912.2×10-321.577.81×10-422042228.76
Table 4  EIS fitting results of 5083 Al alloy coating
t / d

Rs

Ω·cm2

Qc

S·cm-2·s n

Rc

Ω·cm2

Qct

S·cm-2·s n

Rct

Ω·cm2

Rp

Ω·cm2

14.0893.16×10-23.7243.0×10-2193.7199.14
22.5442.43×10-2251.91.40×10-27.277260.85
51.2221.26×10-2112.86.45×10-356.23170.86
100.79726.81×10-31.8131.22×10-2712715.65
205.8267.23×10-329.711.14×10-2751782.55
305.9557.80×10-316.757.49×10-3918.4937.27
Table 5  EIS fitting results of Zn15Al coating
Fig.9  Polarization resistance of two coatings in NSS environment
Fig.10  Supersaturation of corrosion products of Al(OH)3 and Zn(OH)2
1 Liu S, Wang Y P, Wang S F. Several discussions on metal corrosion and protection [J]. Mod. chem. Res., 2022, (09): 23
刘 帅, 王艺澎, 王少峰. 金属腐蚀与防护问题的若干探讨 [J]. 当代化工研究, 2022, (09): 23
2 Xie C F. Introduction to metal corrosion principle and protection [J]. Total Corros. Control, 2019, 33(07): 18
谢春峰. 金属腐蚀原理及防护简介[J]. 全面腐蚀控制, 2019, 33(07): 18
3 Wang Y X, Zhang Y, Zhang C M, et al. The development and application of arc spraying technology [J]. Agric. Equip. Veh. Eng., 2010, (03): 26
王有喜, 张 勇, 张春明 等. 电弧喷涂技术的发展及应用 [J]. 农业装备与车辆工程, 2010, (03): 26
4 Zeng Z, Sakoda N, Tajiri T. Corrosion behavior of wire-arc-sprayed stainless steel coating on mild steel [J]. J. Therm. Spray Technol., 2006, 15: 431
doi: 10.1361/105996306X124446
5 Chen T C, Chou C C, Yung T Y, et al. Wear behavior of thermally sprayed Zn/15Al, Al and Inconel 625 coatings on carbon steel [J]. Surf. Coat. Technol., 2016, 303: 78
doi: 10.1016/j.surfcoat.2016.03.095
6 Rogers F S. Thermal spray for commercial shipbuilding [J]. J. Therm. Spray Technol., 1997, 6: 291
doi: 10.1007/s11666-997-0060-2
7 Wood R J K, Speyer A J. Erosion-corrosion of candidate HVOF aluminium-based marine coatings [J]. Wear, 2004, 256: 545
doi: 10.1016/S0043-1648(03)00564-7
8 Soechting F O. A design perspective on thermal barrier coatings [J]. J. Therm. Spray Technol., 1999, 8: 505
doi: 10.1361/105996399770350179
9 Toma D, Brandl W, Marginean G. Wear and corrosion behaviour of thermally sprayed cermet coatings [J]. Surf. Coat. Technol., 2001, 138: 149
doi: 10.1016/S0257-8972(00)01141-5
10 Wang B Q. Erosion-corrosion of thermal sprayed coatings in FBC boilers [J]. Wear, 1996, 199: 24
doi: 10.1016/0043-1648(96)06972-4
11 Hermanek F J. Automation of the thermal spray process [J]. SAE Trans., 1982, 91: 2213
12 Jandin G, Liao H, Feng Z Q, et al. Correlations between operating conditions, microstructure and mechanical properties of twin wire arc sprayed steel coatings [J]. Mater. Sci. Eng., 2003, 349A: 298
13 Chaliampalias D, Vourlias G, Pavlidou E, et al. High temperature oxidation and corrosion in marine environments of thermal spray deposited coatings [J]. Appl. Surf. Sci., 2008, 255: 3104
doi: 10.1016/j.apsusc.2008.08.101
14 Choe H B, Lee H S, Shin J H. Experimental study on the electrochemical anti-corrosion properties of steel structures applying the arc thermal metal spraying method [J]. Materials, 2014, 7: 7722
doi: 10.3390/ma7127722
15 Paredes R S C, Amico S C, d'Oliveira A S C M. The effect of roughness and pre-heating of the substrate on the morphology of aluminium coatings deposited by thermal spraying [J]. Surf. Coat. Technol., 2006, 200: 3049
doi: 10.1016/j.surfcoat.2005.02.200
16 Schmidt D P, Shaw B A, Sikora E, et al. Corrosion protection assessment of barrier properties of several zinc-containing coating systems on steel in artificial seawater [J]. Corrosion, 2006, 62: 323
doi: 10.5006/1.3280665
17 Hudson J C, Stanners J F. The effect of climate and atmospheric pollution on corrosion [J]. J. Appl. Chem., 1953, 3: 86
doi: 10.1002/jctb.5010030208
18 Hoar T P, Radovici O. Zinc-aluminium sprayed coatings [J]. Trans. IMF, 1964, 42: 211
doi: 10.1080/00202967.1964.11869929
19 Kuroda S, Kawakita J, Takemoto M. An 18-year exposure test of thermal-sprayed Zn, Al, and Zn-Al coatings in marine environment [J]. Corrosion, 2006, 62: 635
doi: 10.5006/1.3280677
20 Büteführ M. Zinc-aluminium-coatings as corrosion protection for steel [J]. Mater. Corros., 2007, 58: 721
doi: 10.1002/(ISSN)1521-4176
21 Jiang Q, Miao Q, Liang W P, et al. Corrosion behavior of arc sprayed Al-Zn-Si-RE coatings on mild steel in 3.5% NaCl solution [J]. Electrochim. Acta, 2014, 115: 644
doi: 10.1016/j.electacta.2013.09.156
22 Xiao Y X, Jiang X H, Xiao Y D, et al. Research on Zn-Al15 thermal spray metal coating and its organic painting composite system protection performance [J]. Proc. Eng., 2012, 27: 1644
doi: 10.1016/j.proeng.2011.12.632
23 Asgari H, Toroghinejad M R, Golozar M A. Effect of coating thickness on modifying the texture and corrosion performance of hot-dip galvanized coatings [J]. Curr. Appl. Phys., 2009, 9: 59
doi: 10.1016/j.cap.2007.10.090
24 State Administration for Market Regulation, Standardization Administration of the People's Republic of China. GB/T 9790-2021 Metallic materials—Vickers and Knoop microhardness tests of metallic and other inorganic coatings [S]. Beijing: Standards Press of China, 2021
国家市场监督管理总局, 国家标准化管理委员会. GB/T 9790-2021 金属材料 金属及其他无机覆盖层的维氏和努氏显微硬度试验 [S]. 北京: 中国标准出版社, 2021
25 General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China.GB/T 8642-2002Thermal spraying--Determiantion of tensile adhesive strength [S]. Beijing: Standards Press of China, 2003
中华人民共和国国家质量监督检验检疫总局. GB/T 8642-2002 热喷涂 抗拉结合强度的测定 [S]. 北京: 中国标准出版社, 2003
26 State Administration for Market Regulation, Standardization Administration of the People's Republic of China. GB/T 10125-2021 Corrosion tests in artificial atmospheres—Salt spray tests [S]. Beijing: Standards Press of China, 2021
国家市场监督管理总局, 国家标准化管理委员会. GB/T 10125-2021 人造气氛腐蚀试验 盐雾试验 [S]. 北京: 中国标准出版社, 2021
27 State Administration of Machinery Industry, Instrument Functional Materials Standardization Technical Committee. JB/T 7901-1999 Metals materials-Uniform corrosion - Methods of laboratory immersion testing [S]. Beijing: China Machine Press, 2004
国家机械工业局, 仪表功能材料标准化技术委员会. JB/T 7901-1999 金属材料实验室均匀腐蚀全浸试验方法 [S]. 北京: 机械工业出版社, 2004
28 General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. GB/T 16545-2015 Corrosion of metals and alloys-Removal of corrosion products from corrosion test specimens [S]. Beijing: Standards Press of China, 2016
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 16545-2015 金属和合金的腐蚀 腐蚀试样上腐蚀产物的清除 [S]. 北京: 中国标准出版社, 2016
29 Wang F. Corrosion bahaviors of Zn, Al, and ZnAl coatings in simulated deep-ocean environment [D]. Qingdao: China University of Petroleum (East China), 2015
王 芳. 电弧喷涂Zn、Al、ZnAl涂层在模拟深海环境下的腐蚀行为研究 [D]. 青岛: 中国石油大学(华东), 2015
30 Liu W, Lan Z, He L Z. Types and source of inclusions in 5182 aluminum alloy melt [J]. Light Alloy Fabr. Technol., 2018, 46(3): 15
刘 旺, 兰 政, 何立子. 5182 铝合金熔体夹渣物种类及其来源研究 [J]. 轻合金加工技术, 2018, 46(3): 15
31 Chen W P. Study on reaction behavior of in-situ MgAl2O4 spinel formation [D]. Suzhou: Soochow University, 2017
陈伟鹏. 氧化镁—氧化铝原位合成镁铝尖晶石反应行为的研究 [D]. 苏州: 苏州大学, 2017
32 Grilli R, Baker M A, Castle J E, et al. Localized corrosion of a 2219 aluminium alloy exposed to a 3.5% NaCl solution [J]. Corros. Sci., 2010, 52: 2855
doi: 10.1016/j.corsci.2010.04.035
33 Yin Q. Study on the corrosion mechanism of zinc with different influence factors in simulated atmosphere [D]. Hefei: University of Science and Technology of China, 2019
尹 奇. 模拟大气环境下不同影响因子对锌腐蚀的作用机制研究 [D]. 合肥: 中国科学技术大学, 2019
34 Rodriguez J J S, Álvarez C M, Gonzáalez J E G. EIS characterisation of the layer of corrosion products on various substrates in differing atmospheric environments [J]. Mater. Corros., 2006, 57: 350
doi: 10.1002/(ISSN)1521-4176
35 Odnevall I, Leygraf C. Formation of NaZn4Cl (OH)6SO4·6H2O in a marine atmosphere [J]. Corros. Sci., 1993, 34: 1213
doi: 10.1016/0010-938X(93)90082-R
36 Gao W B. Sensitization behavior and environmentally assisted cracking of AA5083-H128 Al-Mg navy alloy [D]. Tianjin: Tianjin University, 2018
高文斌. 船舰用铝镁合金AA5083-H128的敏化析出行为和环境敏感断裂 [D]. 天津: 天津大学, 2018
37 Ren J M, Ma J B, Zhang J, et al. Electrochemical performance of pure Al, Al-Sn, Al-Mg and Al-Mg-Sn anodes for Al-air batteries [J]. J. Alloy. Compd., 2019, 808: 151708
doi: 10.1016/j.jallcom.2019.151708
38 Dean J A. Lange's Handbook of Chemistry [M]. 13th ed. New York: McGraw-Hill, 1985
39 Zhang S, Liu J, Tang M, et al. Role of rare earth elements on the improvement of corrosion resistance of micro-alloyed steels in 3.5% NaCl solution [J]. J. Mater. Res. Technol., 2021, 11: 519
doi: 10.1016/j.jmrt.2021.01.041
[1] YAO Yong, LIU Guojun, LI Shizhu, LIU Miaoran, CHEN Chuan, HUANG Tingcheng, LIN Hai, LI Zhanjiang, LIU Yuwei, WANG Zhenyao. Research Progress on Corrosion Prediction Model of Metallic Materials for Electrical Equipment[J]. 中国腐蚀与防护学报, 2023, 43(5): 983-991.
[2] GU Yuhui, DONG Liang, SONG Qinfeng. Preparation of Micro Metal Oxide pH Electrode and Its Application in Corrosion and Protection[J]. 中国腐蚀与防护学报, 2023, 43(5): 971-982.
[3] LI Shuli, DENG Shuduan, LI Xianghong. Research Progress and Prospects of Plant Corrosion Inhibitors for Aluminum[J]. 中国腐蚀与防护学报, 2023, 43(5): 929-947.
[4] LIU Wei. Asymmetric Surface Configuration for Electrochemical Noise Measurement on Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(5): 1151-1158.
[5] DONG Hongmei, LI Baoyi, RAN Boyuan, WANG Qi, NIU Yulan, DING Lifeng, QIANG Yujie. Corrosion Inhibition Mechanism of the Eco-friendly Corrosion Inhibitor Linagliptin on Copper in Sulfuric Acid[J]. 中国腐蚀与防护学报, 2023, 43(5): 1031-1040.
[6] CHEN Xiaohan, BAI Yang, WANG Zhichao, CHEN Congzong, ZHANG Yong, CUI Xianlin, ZUO Juanjuan, WANG Tongliang. Preparation and Corrosion Resistance of Surface Tolerant Epoxy Anti-corrosion Primer[J]. 中国腐蚀与防护学报, 2023, 43(5): 1126-1132.
[7] LUO Weihua, WANG Haitao, YU Lin, XU Shi, LIU Zhaoxin, GUO Yu, WANG Tingyong. Effect of Zn Content on Electrochemical Properties of Al-Zn-In-Mg Sacrificial Anode Alloy[J]. 中国腐蚀与防护学报, 2023, 43(5): 1071-1078.
[8] ZHOU Hao, YOU Shijie, WANG Shengli. Corrosion Behavior and Corrosion Inhibitor for Copper Artifacts in CO2 Environment[J]. 中国腐蚀与防护学报, 2023, 43(5): 1049-1056.
[9] LI Haiyan, LIU Huan, WANG Geyi, ZHANG Xiuju, CHEN Tongzhou, YU Yun, YAO Hong. Review on Erosion-wear and Protection of Heat Exchange Surface in Power Station Boilers[J]. 中国腐蚀与防护学报, 2023, 43(5): 957-970.
[10] PAN Dailong, SI Xiaodong, LV Jinhong. Effect of Flow Velocity on Flow Accelerated Corrosion Rate of Carbon Steel Elbow[J]. 中国腐蚀与防护学报, 2023, 43(5): 1064-1070.
[11] LIU Ming, WANG Jie, ZHU Chunhui, ZHANG Yanxiao. Electrochemical Corrosion Behavior of 3D-printed NiTi Shape Memory Alloy in a Simulated Oral Environment[J]. 中国腐蚀与防护学报, 2023, 43(4): 781-786.
[12] MENG Fandi, GAO Haodong, LIU Li, CUI Yu, LIU Rui, WANG Fuhui. Preparation and Anticorrosive Performance of a Basalt Organic Coating for Deep Sea Coupled Pressure-fluid Environment[J]. 中国腐蚀与防护学报, 2023, 43(4): 704-712.
[13] NI Ya, SHI Fangchang, QI Jiqiu. Effect of Ce on Microstructure and Corrosion Resistance of Zn-0.6Cu-0.3Ti Alloy[J]. 中国腐蚀与防护学报, 2023, 43(4): 803-811.
[14] HUANG Zhifeng, YONG Qiwen, FANG Rui, XIE Zhihui. Superhydrophobic and Corrosion-resistant Nickel-based Composite Coating on Magnesium Alloy[J]. 中国腐蚀与防护学报, 2023, 43(4): 755-764.
[15] DING Li, ZOU Wenjie, ZHANG Xuejiao, CHEN Jun. Silicon-Zirconium Composite Conversion Film on ADC12 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2023, 43(4): 903-910.
No Suggested Reading articles found!