Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (3): 535-543    DOI: 10.11902/1005.4537.2022.201
Current Issue | Archive | Adv Search |
Atmospheric Corrosion Characteristics and Regularity of the Q235, 40Cr Steels Commonly-used in Power Grid Equipment in Anhui Province
LI Lemin1, ZHANG Jie2, BIAN Yafei1, MIAO Chunhui2, CHEN Guohong2, TANG Wenming1()
1.School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
2.Electric Power Research Institute, Anhui Electric Power Co. Ltd., State Grid, Hefei 230601, China
Download:  HTML  PDF(6087KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Aimming at the Q235 and 40Cr steel samples exposed in air for 1 and 3 a in typical substations in Anhui province, the products and morphologies of their corrosion layers were investigated, and further the corrosion mechanisms were clarified. The corrosion rate of the steel samples was obtained via the mass-loss method, and then the grey correlation analysis was executed to determine the influences of main environmental factors on atmospheric corrosions of the Q235 and 40Cr steel samples exposed for 1 and 3 a, respectively, through combining with the main environmental factor data of the relevant cities in Anhui province. The results showed that the atmospheric corrosion products of the Q235 and 40Cr steel samples were FeOOH, Fe3O4, Fe(OH)3 and FeSO4. The corrosion layer is covered by cotton ball-like α-FeOOH and flaky γ-FeOOH. It has a dense structure, but laminar cracking takes place. The atmospheric corrosion grades of the Q235 and 40Cr steels in Anhui province have no significant difference, and both are of C2 and C3. The correlation degree sequence of environmental factors affecting atmospheric corrosion of the Q235 and 40Cr samples exposed for 1 a is: NO2> temperature >SO2> relative humidity >O3. With the exposure time prolonging to 3 a, it is changed to be: SO2, temperature >NO2> relative humidity >O3.

Key words:  grid equipment steel      atmospheric exposure test      atmospheric corrosion      corrosion characteristic      gray relation analysis     
Received:  21 June 2022      32134.14.1005.4537.2022.201
ZTFLH:  TG174  
Fund: Science and Technology Research Project of Anhui Electric Power Co. Ltd., State Grid, China(B1120521001U)
Corresponding Authors:  TANG Wenming, E-mail: wmtang69@126.com

Cite this article: 

LI Lemin, ZHANG Jie, BIAN Yafei, MIAO Chunhui, CHEN Guohong, TANG Wenming. Atmospheric Corrosion Characteristics and Regularity of the Q235, 40Cr Steels Commonly-used in Power Grid Equipment in Anhui Province. Journal of Chinese Society for Corrosion and protection, 2023, 43(3): 535-543.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.201     OR     https://www.jcscp.org/EN/Y2023/V43/I3/535

CitySubstationEnvironmentCitySubstationEnvironment
AnqingH1Industrial pollutionFuyangK1Village
H4VillageK3City
H9CityK4Village
H12VillageK8Vity
H13VillageT14Village
ChizhouR1Industrial pollutionMaanshanE2Industrial pollution
R5CityE3City
R6CityE6Village
R7VillageE7Industrial pollution
T25VillageE8Industrial pollution
HuainanD1VillageTonglingG2Industrial pollution
D4CityG3Industrial pollution
D6CityG4Industrial pollution
D7VillageG7Industrial pollution
T28VillageT2Village
Table 1  Sampling sites and environmental characteristics of the atmospheric exposure test
CityExposure timeAverage temperature / ℃Average humidity / %NO2 / µg·m-3O3 / µg·m-3SO2 / µg·m-3
Anqing1 a16.776.027.8170.48.8
3 a16.975.326.9124.78.4
Chizhou1 a16.581.032.7156.09.9
3 a16.979.028.9115.09.3
Fuyang1 a15.375.028.2156.76.6
3 a15.872.028.0120.86.4
Huainan1 a15.576.027.9169.613.6
3 a15.774.327.6126.111.6
Maanshan1 a15.977.035.1166.512.5
3 a16.474.034.4121.311.2
Tongling1 a16.780.035.4142.414.8
3 a16.978.035.8105.613.8
Table 2  Air quality data of the relevant cities in Anhui province in the exposure test period
Fig.1  XRD patterns of Q235 (a) and 40Cr (b) steel samples in different sites after exposure in air for 3 a
Fig.2  Planar SEM images of Q235 (a) and 40Cr (b) steel samples in site R1 after exposure in air for 1 a
Fig.3  Planar SEM images (a, b) and EDS spectrum of point 1 in Fig.3b (c) of the Q235 (a) and 40Cr (b) steel samples in site R1 after exposure in air for 3 a
Fig.4  Cross-sectional SEM images (a, b) and EDS spectrum of the square area in Fig.4a (c) of the Q235 (a) and 40Cr (b) steel in site R1 after exposure in air for 3 a
Fig.5  Schematic diagram showing the atmospheric corrosion mechanism of carbon steel
CityQ235 steel40Cr steel
Average corrosion rate / μm·a-1bGradeAverage corrosion rate / μm·a-1bGrade
1 a3 a1 a3 a
Anqing22.9013.110.49C223.1112.360.43C2
Chizhou27.4913.360.34C325.9313.150.38C3
Fuyang25.4112.900.38C324.8212.720.39C3
Huainan25.8412.230.32C325.4112.660.37C3
Maanshan29.1915.150.40C325.8213.610.42C3
Tongling28.2716.080.49C330.3215.060.36C3
Table 3  Corrosion rates and grades of the Q235 and 40Cr steel samples in the relevant cities of Anhui province
Fig.6  Grey relation coefficient curves of the Q235 (a, b) and 40Cr (c, d) steel samples in the relevant cities of Anhui province after exposure for 1 a (a, c) and 3 a (b, d)
Environmental factor / iQ235 steel40Cr steel
1 a3 a1 a3 a
riRankriRankriRankriRank
Average temperature / ℃0.90120.96710.91320.9652
Average humidity / %0.60840.48640.60840.4864
NO2 / µg·m-30.96710.78530.96510.7853
SO2 / µg·m-30.85030.95120.86130.9661
O3 / µg·m-30.36650.35650.36750.3575
Table 4  Grey relational analyses of the Q235 and 40Cr steel samples after exposure for 1 a and 3 a
1 Pan Y X, Wang M, Wang Z G, et al. Influence of atmospheric corrosive environment on corrosion of power transmission and transformation equipment in Sichuan power grid [J]. Mater. Prot., 2018, 51(4): 110
潘玉霞, 王 玫, 王志高 等. 大气腐蚀环境对四川电网输变电设备腐蚀的影响研究 [J]. 材料保护, 2018, 51(4): 110
2 Chen Y, Xu L M, Yao N N, et al. Atmospheric corrosion and protection of steel components for transmission and distribution projects [J]. North China Electr. Power, 2014, (12): 10
陈 云, 徐利民, 药宁娜 等. 输变电钢构件的大气腐蚀与防护 [J]. 华北电力技术, 2014, (12): 10
3 Wang P, Sun X L, Ma D W, et al. Investigation and analysis of atmospheric corrosion of transmission and transformation equipment [J]. Corros. Sci. Prot. Technol., 2012, 24: 525
王 平, 孙心利, 马东伟 等. 输变电设备大气腐蚀情况调查与分析 [J]. 腐蚀科学与防护技术, 2012, 24: 525
4 Wang Z G, Hai C, Jiang J, et al. Corrosion behavior of Q235 steels in atmosphere at Deyang district for one year [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 871
王志高, 海 潮, 姜 杰 等. Q235钢在德阳大气环境中腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2021, 41: 871
doi: 10.11902/1005.4537.2020.180
5 Wang J, Chen J J, Xie Y, et al. Evaluation of environmental factors related with atmosphere corrosivity in Hunan provice by atmospheric corrosion monitoring technique [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 487
王 军, 陈军君, 谢 亿 等. 湖南地区大气腐蚀严酷性的环境因素与大气腐蚀监测仪评定 [J]. 中国腐蚀与防护学报, 2021, 41: 487
6 Liang C F, Hou W T. Sixteen-year atmospheric corrosion exposure study of steels [J]. J. Chin. Soc. Corros. Prot., 2005, 25: 1
梁彩凤, 侯文泰. 碳钢、低合金钢16年大气暴露腐蚀研究 [J]. 中国腐蚀与防护学报, 2005, 25: 1
7 Shiri M, Rezakhani D. Estimated and stationary atmospheric corrosion rate of carbon steel, galvanized steel, copper and aluminum in Iran [J]. Metall. Mater. Trans., 2020, 51A: 342
8 Wang Z G, Tian Q Q, Geng Z, et al. Corrosion investigation and protection measures of power transmission and transformation equipment in Sichuan power grid [J]. Corros. Prot., 2021, 42(3): 34
王志高, 田倩倩, 耿 植 等. 四川电网输变电设备的腐蚀情况调查及防护措施 [J]. 腐蚀与防护, 2021, 42(3): 34
9 Pei Z B, Cheng X Q, Yang X J, et al. Understanding environmental impacts on initial atmospheric corrosion based on corrosion monitoring sensors [J]. J. Mater. Sci. Technol., 2021, 64: 214
doi: 10.1016/j.jmst.2020.01.023
10 Liu S F, Cai H, Yang Y J, et al. Advance in grey incidence analysis modelling [J]. Syst. Eng. Theory Pract., 2013, 33: 2041
刘思峰, 蔡 华, 杨英杰 等. 灰色关联分析模型研究进展 [J]. 系统工程理论与实践, 2013, 33: 2041
doi: 10.12011/1000-6788(2013)8-2041
11 Ma Y Y. Study on corrosion behavior and relationship between environmental factors of bronze cultural relics [D]. Shanghai: East China University of Science and Technology, 2021
马圆圆. 环境因素对青铜质文物腐蚀行为的影响及关联性分析 [D]. 上海: 华东理工大学, 2021
12 Wang R F, Wang G C, Su W G, et al. Application of grey relational analysis to environmental factors of atmospheric corrosion of aerospace aluminum alloys [J]. Equip. Environ. Eng., 2013, 10(3): 26
王瑞峰, 王国才, 苏维国 等. 航空铝合金材料大气腐蚀环境因子灰色关联分析 [J]. 装备环境工程, 2013, 10(3): 26
13 Cao X L, Deng H D, Lan W. Use of the grey relational analysis method to determine the important environmental factors that affect the atmospheric corrosion of Q235 carbon steel [J]. Anti-Corros. Methods Mater., 2015, 62: 7
doi: 10.1108/ACMM-10-2013-1308
14 Liu K J. Classification and evaluation of environment of atmospheric corrosion [J]. Total Corros. Control, 2015, 29(10): 26
刘凯吉. 大气腐蚀环境的分类及腐蚀性评定 [J]. 全面腐蚀控制, 2015, 29(10): 26
15 Deng J L. Control problems of grey systems [J]. Syst. Control Lett., 1982, 1: 288
doi: 10.1016/S0167-6911(82)80025-X
16 Tang R M, Zhu Y C, Liu G M, et al. Gray correlative degree analysis of Q235 steel/conductive concrete corrosion in three typical soil environments [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 110
唐荣茂, 朱亦晨, 刘光明 等. Q235钢/导电混凝土在3种典型土壤环境中腐蚀的灰色关联度分析 [J]. 中国腐蚀与防护学报, 2021, 41: 110
doi: 10.11902/1005.4537.2020.039
17 Feng Y L, Bai Z H, Chen L H, et al. Correlation of indoor accelerated corrosion with outdoor exposure for Corten-A weathering steel in polluted marine atmospheric environments [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 519
冯亚丽, 白子恒, 陈利红 等. Corten-A耐候钢在模拟污染海洋大气环境中的加速腐蚀相关性研究 [J]. 中国腐蚀与防护学报, 2019, 39: 519
doi: 10.11902/1005.4537.2019.229
18 De la Fuente D, Díaz I, Simancas J, et al. Long-term atmospheric corrosion of mild steel [J]. Corros. Sci., 2011, 53: 604
doi: 10.1016/j.corsci.2010.10.007
19 Ding G Q, Yang W G, Zhang B, et al. Non-uniform corrosion behavior of steels in natural atmospheric environment [J]. Corros. Prot., 2014, 35: 541
丁国清, 杨万国, 张 波 等. 钢在自然大气环境中的不均匀腐蚀行为 [J]. 腐蚀与防护, 2014, 35: 541
20 Gao Y, Huang Y H, Zheng Z J, et al. Atmospheric corrosion behavior of Q235 steel exposed on transmission tower sites of Guangdong province [J]. J. South China Univ. Technol. (Nat. Sci. Ed.), 2018, 46(7): 39
高 岩, 黄殷辉, 郑志军 等. Q235钢在广东省输电杆塔现场的大气腐蚀行为 [J]. 华南理工大学学报 (自然科学版), 2018, 46(7): 39
21 Cao G W, Liu Y W, Zhang D D, et al. Corrosion behavior of Q235 and Q345 carbon steel in Hongyanhe atmosphere [J]. Corros. Prot., 2018, 39: 24
曹公望, 刘雨薇, 张丹丹 等. Q235和Q345钢在红沿河大气环境中的腐蚀行为 [J]. 腐蚀与防护, 2018, 39: 24
22 Xiao K, Dong C F, Li X G, et al. Corrosion products and formation mechanism during initial stage of atmospheric corrosion of carbon steel [J]. J. Iron Steel Res. Int., 2008, 15: 42
23 Chen Y Y, Tzeng H J, Wei L I, et al. Corrosion resistance and mechanical properties of low-alloy steels under atmospheric conditions [J]. Corros. Sci., 2005, 47: 1001
doi: 10.1016/j.corsci.2004.04.009
24 Townsend H E. Effects of alloying elements on the corrosion of steel in industrial atmospheres [J]. Corrosion, 2001, 57: 497
doi: 10.5006/1.3290374
25 Mao H Y, Cai Q W, Wu H B, et al. Effect of alloy element and carbon content on corrosion behavior of E36 ship plate steel [J]. Corros. Prot., 2013, 34: 499
毛红艳, 蔡庆伍, 武会宾 等. 合金元素和碳含量对E36船板钢腐蚀行为的影响 [J]. 腐蚀与防护, 2013, 34: 499
26 Xing W J, Ding H F, Du X D, et al. Effect of carbon content on structure and corrosion property of low carbon high alloy steel [J]. Hot Work. Technol., 2006, 35(14): 35
邢文静, 丁厚福, 杜晓东 等. 碳含量对低碳高合金钢组织及耐腐蚀行为的影响 [J]. 热加工工艺, 2006, 35(14): 35
27 Schindelholz E, Kelly R G. Wetting phenomena and time of wetness in atmospheric corrosion: a review [J]. Corros. Rev., 2012, 30: 135
28 Wang H T, Han E-H, Ke W. Gray model and gray relation analysis for atmospheric corrosion of carbon steel and low alloy steel [J]. Corros. Sci. Prot. Technol., 2006, 18: 278
王海涛, 韩恩厚, 柯 伟. 碳钢、低合金钢大气腐蚀的灰色模型预测及灰色关联分析 [J]. 腐蚀科学与防护技术, 2006, 18: 278
[1] WANG Yang, LIU Yuanhai, MU Xianlian, LIU Miaoran, WANG Jun, LI Qiuping, CHEN Chuan. Effect of Environmental Factors on Material Transfer in Thin Liquid Film During Atmospheric Corrosion Process in Marine Environment[J]. 中国腐蚀与防护学报, 2023, 43(5): 1015-1021.
[2] HAO Wenkui, CHEN Xin, XU Lingling, HAN Yu, CHEN Yun, HUANG Luyao, ZHU Zhixiang, YANG Bingkun, WANG Xiaofang, ZHANG Qiang. Drawing of Atmospheric Corrosion Map of Carbon Steel and Galvanized Steel for Power Grid[J]. 中国腐蚀与防护学报, 2023, 43(4): 795-802.
[3] ZHOU Mengxin, WU Jun, FAN Zhibin, ZHOU Xuejie, CHEN Hao. Current Situation and Prospect of On-line Monitoring Technology for Atmospheric Corrosion Testing of Metallic Materials[J]. 中国腐蚀与防护学报, 2023, 43(1): 38-46.
[4] FAN Zhibin, LI Xingeng, WANG Xiaoming, WANG Qian. Review of Regional Atmospheric Corrosion Mapping Technologys[J]. 中国腐蚀与防护学报, 2023, 43(1): 29-37.
[5] XIA Xiaojian, WAN Xinyuan, GAO Yan, WANG Qiwei, YAN Kanghua, CHEN Yunxiang, HONG Yicheng, ZHANG Junxi. Corrosion Characteristics of Atmospheric Corrosion of 1050 Al-alloy under Power-on Condition[J]. 中国腐蚀与防护学报, 2022, 42(6): 1065-1069.
[6] FAN Yi, YANG Wenxiu, WANG Jun, CAI Jiaxing, MA Hongchi. Corrosion Behavior of Q690qE Steel in a Simulated Coastal-industrial Environment[J]. 中国腐蚀与防护学报, 2022, 42(4): 669-674.
[7] MA Xiaoze, MENG Lingdong, CAO Xiangkang, XIAO Song, DONG Zehua. Influence of Co-deposition of Pollutant Particulates Ammonium Sulfate and Sodium Chloride on Atmospheric Corrosion of Copper of Printed Circuit Board[J]. 中国腐蚀与防护学报, 2022, 42(4): 540-550.
[8] HUANG Zhaoxin, ZHU Zhiping, ZHOU Pan, JIANG Yuankang, HE Mingpeng, WANG Zhenggang. Corrosion Characteristics of Propylene Glycol Antifreeze in Valve Cooling System of Converter Station[J]. 中国腐蚀与防护学报, 2022, 42(3): 471-478.
[9] LIU Yichao, ZHONG Xiankang, HU Junying. Characteristics and Mechanisms of Elemental Sulfur Induced Corrosion of Sulfur-resistant Steels in Wet Flow CO2 Environment[J]. 中国腐蚀与防护学报, 2022, 42(3): 369-377.
[10] CUI Zhongyu, GE Feng, WANG Xin. Corrosion Mechanism of Materials in Three Typical Harsh Marine Atmospheric Environments[J]. 中国腐蚀与防护学报, 2022, 42(3): 403-409.
[11] WANG Zhigao, HAI Chao, JIANG Jie, LAN Xinsheng, DU Cuiwei, LI Xiaogang. Corrosion Behavior of Q235 Steels in Atmosphere at Deyang District for one Year[J]. 中国腐蚀与防护学报, 2021, 41(6): 871-876.
[12] XIA Xiaojian, CAI Jianbin, LIN Deyuan, WAN Xinyuan, LI Yangsen, ZHANG Biaohua, CHEN Yunxiang, HAN Jiceng, ZOU Zhimin, JIANG Chunhai. Corrosion Status, Corrosion Mechanisms and Anti-corrosion Measures in Coastal Substations[J]. 中国腐蚀与防护学报, 2021, 41(5): 697-704.
[13] WANG Jun, CHEN Junjun, XIE Yi, XU Song, LIU Lanlan, WU Tangqing, YIN Fucheng. Evaluation of Environmental Factors Related with Atmosphere Corrosivity in Hunan Provice by Atmospheric Corrosion Monitoring Technique[J]. 中国腐蚀与防护学报, 2021, 41(4): 487-492.
[14] CHEN Wenjuan, FANG Lian, PAN Gang. Corrosion Evolution Characteristics of Q235B Steel in O3/SO2 Composite Atmosphere[J]. 中国腐蚀与防护学报, 2021, 41(4): 450-460.
[15] FAN Yi,CHEN Linheng,CAI Jiaxing,DAi Qinqin,MA Hongchi,CHENG Xuequn. Corrosion Behavior of Hot-rolled AH36 Plate in Indoor Storage Environment[J]. 中国腐蚀与防护学报, 2020, 40(1): 10-16.
No Suggested Reading articles found!