|
|
Effect of L-malic Acid and 2,2'-bidipyridine on Electroless Copper Plating in Potassium Sodium Tartrate System at Low Temperature |
ZHU Hao1, CHENG Yi1, SONG Xuan1, ZHAO Wenxia1( ), LI Xinwei1, LIU Xin1, HUI Kaihong1, CHEN Huaijun1, ZHAI Shilong2 |
1.School of Chemistry and Chemical Engineering, Ningxia Normal University, Guyuan 756000, China 2.School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, China |
|
|
Abstract In general, certain additives were incorporated into potassium sodium tartrae based electrolyte for electroless copper plating, aiming to improve its stability and the electroless copper plating efficiency. Herewith, L-malic acid and 2,2'-bidipyridine were selected as additives. The effect of L-malic acid and 2,2'-bidipyridine individually or in combination as additives on the performance of the sodium potassium tartrate based electrolyte for copper plating on polyacrylonitrile-butadiene-styrene copolymer (ABS) plates was studied, while the ABS has been subjected to light etching pre-treatment in an optimized MnO2-H2SO4-H2O ternary solution. The results showed that the addition of L-malic acid increased the Cu-deposition rate, while the addition of 2,2'-bidipyridine decreased the Cu-deposition rate. When the combination additives of 2 mg/LL-malic acid and 1 mg/L2,2'-bidipyridine were added to the potassium sodium tartrate electroless copper plating system, the deposition rate increased from 3.94 µm/h to 5.20 µm/h, and the copper plating system has higher stability. Accordingly, the acquired Cu-coating was uniform, compact and good adhesive to the substrate, and which presents light pink color with a high gloss as well. Finally, a stable low temperature electroless copper plating system was determined in terms of the bath stability, Cu-deposition rate, and the coating morphology and gloss etc.
|
Received: 28 July 2022
32134.14.1005.4537.2022.244
|
|
Fund: National Natural Science Foundation of China(21561027);First-class Discipline in Ningxia Colleges and Universities pedagogy(NXYLXK2017B11);Natural Science Foundation of Ningxia(2020AAC03266);Natural Science Foundation of Ningxia(2022AAC03298);Science and Technology Innovation Leading Talent Project of Ningxia Hui Autonomous Region(KJT2016004);Ningxia Youth Top-notch Talent([2017]787);Ningxia New University Think Tank Project([2018]12);Science and Technology Project of Guyuan City(2020-GYKYF003);Liupanshan Resource Engineering and Technology Research Center(HGZD22-18);Key Discipline of Inorganic Chemistry([2017]83) |
Corresponding Authors:
ZHAO Wenxia, E-mail: zwxchj2006@163.com
|
Cite this article:
ZHU Hao, CHENG Yi, SONG Xuan, ZHAO Wenxia, LI Xinwei, LIU Xin, HUI Kaihong, CHEN Huaijun, ZHAI Shilong. Effect of L-malic Acid and 2,2'-bidipyridine on Electroless Copper Plating in Potassium Sodium Tartrate System at Low Temperature. Journal of Chinese Society for Corrosion and protection, 2023, 43(3): 544-552.
URL:
https://www.jcscp.org/EN/10.11902/1005.4537.2022.244 OR https://www.jcscp.org/EN/Y2023/V43/I3/544
|
1 |
Ghosh S. Electroless copper deposition: A critical review [J]. Thin Solid Films, 2019, 669: 641
doi: 10.1016/j.tsf.2018.11.016
|
2 |
Tang C H. Modern plating technologies: Part III—Electroless copper plating: industrial applications [J]. Electroplat. Finish., 2021, 40: 212
|
|
唐春华. 现代镀覆技术第三部分──化学镀铜(续2) [J]. 电镀与涂饰, 2021, 40: 212
|
3 |
Yin X B, Li Y Q, Gao R J. Preparation of superhydrophobic surface on copper substrate and its corrosion resistance [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 93
|
|
尹续保, 李育桥, 高荣杰. 铜基超疏水表面的制备及其耐蚀性研究 [J]. 中国腐蚀与防护学报, 2022, 42: 93
doi: 10.11902/1005.4537.2020.256
|
4 |
Liu H Y, Zhang X Q, Teng Y X, et al. Corrosion resistance and antifouling performance of copper-bearing low-carbon steel in marine environment [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 679
|
|
刘宏宇, 张喜庆, 滕莹雪 等. 含铜低碳钢在海洋环境下的耐蚀和防污性能的研究 [J]. 中国腐蚀与防护学报, 2021, 41: 679
doi: 10.11902/1005.4537.2020.242
|
5 |
Hanna F, Hamid Z A, Aal A A. Controlling factors affecting the stability and rate of electroless copper plating [J]. Mater. Lett., 2004, 58: 104
doi: 10.1016/S0167-577X(03)00424-5
|
6 |
Luo Y. Study on application of EDTA in copper plating [D]. Xi'an: Shanxi University of Science and Technology, 2014
|
|
罗 媛. EDTA在镀铜中应用的研究 [D]. 西安: 陕西科技大学, 2014
|
7 |
Gao W X, Ye J, Li Q L. Research on electroless copper plating of ABS plastic [J]. Zhejiang Chem. Ind., 2019, 50(3): 36
|
|
高万旭, 叶 健, 李全良. ABS塑料化学镀铜研究 [J]. 浙江化工, 2019, 50(3): 36
|
8 |
Ren B, Du N, Cui Y, et al. Influences of C4O6H4KNa on nucleation of copper in HEDP acid electrolyte [J]. Plat. Finish., 2016, 38(5): 5
|
|
任 兵, 杜 楠, 崔 宇 等. 酒石酸钾钠对HEDP镀铜形核的影响 [J]. 电镀与精饰, 2016, 38(5): 5
|
9 |
Kong D L, Xie J P, Fan X L, et al. Researches on stabilizers in electroless copper plating bath using quadrol and EDTA as complexing agent [J]. Plat. Finish., 2014, 36(3): 5
|
|
孔德龙, 谢金平, 范小玲 等. 化学镀铜溶液中稳定剂的研究 [J]. 电镀与精饰, 2014, 36(3): 5
|
10 |
Qin X, Wang J, Gao L Y, et al. Electrochemical study on electroless copper plating using formaldehyde as reductant [J]. Mater. Prot., 2020, 53(1): 125
|
|
秦 笑, 王 娟, 林高用 等. 甲醛法化学镀铜的电化学研究 [J]. 材料保护, 2020, 53(1): 125
|
11 |
Xiao Y J, Xu Y Z. Study on the additive for electroless copper plating taking the potassium sodium tartrate as the main complexing agent [J]. Surf. Technol., 2012, 41(5): 102
|
|
肖友军, 许永章. 以酒石酸钾钠为主络合剂的化学镀铜添加剂研究 [J]. 表面技术, 2012, 41(5): 102
|
12 |
Dela Pena E M, Roy S. Electrodeposited copper using direct and pulse currents from electrolytes containing low concentration of additives [J]. Surf. Coat. Technol., 2018, 339: 101
doi: 10.1016/j.surfcoat.2018.01.067
|
13 |
Chen W S, Luo G Q, Li M J, et al. Effect of 2, 2’-dipyridyl on the plating rate, microstructure and performance of copper-coated tungsten composite powders prepared using electroless plating [J]. Appl. Surf. Sci., 2014, 301: 85
doi: 10.1016/j.apsusc.2014.01.107
|
14 |
Lee H, Tsai S T, Wu P H, et al. Influence of additives on electroplated copper films and their solder joints [J]. Mater. Charact., 2019, 147: 57
doi: 10.1016/j.matchar.2018.10.029
|
15 |
Lu S, Ren Z B, Xie J Y, et al. Investigation of corrosion inhitibion behavior of 2-aminobenzothiazole and benzotriazole on copper surface [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 577
|
|
卢 爽, 任正博, 谢锦印 等. 2-氨基苯并噻唑与苯并三氮唑复配体系对Cu的缓蚀性能 [J]. 中国腐蚀与防护学报, 2020, 40: 577
|
16 |
Liu Y Q, Liu G M, Fan W X, et al. Effect of polyethylene Glycol-600 on Acidic Zn-Ni alloy electroplating and its corrosion resistance [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 235
|
|
刘永强, 刘光明, 范文学 等. 聚乙二醇-600对酸性Zn-Ni合金的电沉积行为及镀层耐蚀性影响的研究 [J]. 中国腐蚀与防护学报, 2022, 42: 235
doi: 10.11902/1005.4537.2021.084
|
17 |
Li L S, Li X R, Zhao W X, et al. A study of low temperature and low stress electroless copper plating bath [J]. Int. J. Electrochem. Sci., 2013, 8: 5191
|
18 |
Bian J, Wang Z L. Study on microetching of ABS plastic with MnO2-H2SO4-Na5P3O10 system prior to electroless copper plating [J]. Electroplat. Finish., 2014, 33: 474
|
|
边 佳, 王增林. MnO2-H2SO4-Na5P3O10体系对化学镀铜前ABS塑料表面微蚀的研究 [J]. 电镀与涂饰, 2014, 33: 474
|
19 |
Xu J S, Yu R, Liu D, et al. Effect of different pretreatment for ABS resin surface on electroless copperplating [J]. J. Funct. Mater., 2013, 44(S2): 350
|
|
徐久帅, 于 柔, 刘 丹 等. ABS树脂表面不同前处理工艺对化学镀铜的影响 [J]. 功能材料, 2013, 44(S2): 350
|
20 |
Xia S G, Li Z X, Wang Z L. Effects of etching conditions on the surface roughening effect of polycarbonate substrate [J]. Plat. Finish., 2011, 33(8): 1
|
|
夏曙光, 李志新, 王增林. 粗化条件对聚碳酸酯表面粗化效果的影响 [J]. 电镀与精饰, 2011, 33(8): 1
|
21 |
Ding J, Lu X B, Zan L X, et al. Study on chromium-free roughening with manganese dioxide for ABS engineering plastic surface [J]. Electroplat. Finish., 2012, 31(06): 27
|
|
丁 杰, 路旭斌, 昝灵兴 等. ABS工程塑料表面无铬二氧化锰微蚀粗化的研究 [J]. 电镀与涂饰, 2012, 31(06): 27
|
22 |
Huang J H, Shih P S, Renganathan V, et al. Development of high copper concentration, low operating temperature, and environmentally friendly electroless copper plating using a copper-glycerin complex solution [J]. Electrochim. Acta, 2022, 425: 140710
doi: 10.1016/j.electacta.2022.140710
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|