Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (3): 544-552    DOI: 10.11902/1005.4537.2022.244
Current Issue | Archive | Adv Search |
Effect of L-malic Acid and 2,2'-bidipyridine on Electroless Copper Plating in Potassium Sodium Tartrate System at Low Temperature
ZHU Hao1, CHENG Yi1, SONG Xuan1, ZHAO Wenxia1(), LI Xinwei1, LIU Xin1, HUI Kaihong1, CHEN Huaijun1, ZHAI Shilong2
1.School of Chemistry and Chemical Engineering, Ningxia Normal University, Guyuan 756000, China
2.School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, China
Download:  HTML  PDF(7449KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In general, certain additives were incorporated into potassium sodium tartrae based electrolyte for electroless copper plating, aiming to improve its stability and the electroless copper plating efficiency. Herewith, L-malic acid and 2,2'-bidipyridine were selected as additives. The effect of L-malic acid and 2,2'-bidipyridine individually or in combination as additives on the performance of the sodium potassium tartrate based electrolyte for copper plating on polyacrylonitrile-butadiene-styrene copolymer (ABS) plates was studied, while the ABS has been subjected to light etching pre-treatment in an optimized MnO2-H2SO4-H2O ternary solution. The results showed that the addition of L-malic acid increased the Cu-deposition rate, while the addition of 2,2'-bidipyridine decreased the Cu-deposition rate. When the combination additives of 2 mg/LL-malic acid and 1 mg/L2,2'-bidipyridine were added to the potassium sodium tartrate electroless copper plating system, the deposition rate increased from 3.94 µm/h to 5.20 µm/h, and the copper plating system has higher stability. Accordingly, the acquired Cu-coating was uniform, compact and good adhesive to the substrate, and which presents light pink color with a high gloss as well. Finally, a stable low temperature electroless copper plating system was determined in terms of the bath stability, Cu-deposition rate, and the coating morphology and gloss etc.

Key words:  sodium potassium tartrate      electroless copper plating      L-malic acid      2,2'-bidipyridine      deposition rate     
Received:  28 July 2022      32134.14.1005.4537.2022.244
ZTFLH:  TQ153.1  
Fund: National Natural Science Foundation of China(21561027);First-class Discipline in Ningxia Colleges and Universities pedagogy(NXYLXK2017B11);Natural Science Foundation of Ningxia(2020AAC03266);Natural Science Foundation of Ningxia(2022AAC03298);Science and Technology Innovation Leading Talent Project of Ningxia Hui Autonomous Region(KJT2016004);Ningxia Youth Top-notch Talent([2017]787);Ningxia New University Think Tank Project([2018]12);Science and Technology Project of Guyuan City(2020-GYKYF003);Liupanshan Resource Engineering and Technology Research Center(HGZD22-18);Key Discipline of Inorganic Chemistry([2017]83)
Corresponding Authors:  ZHAO Wenxia, E-mail: zwxchj2006@163.com

Cite this article: 

ZHU Hao, CHENG Yi, SONG Xuan, ZHAO Wenxia, LI Xinwei, LIU Xin, HUI Kaihong, CHEN Huaijun, ZHAI Shilong. Effect of L-malic Acid and 2,2'-bidipyridine on Electroless Copper Plating in Potassium Sodium Tartrate System at Low Temperature. Journal of Chinese Society for Corrosion and protection, 2023, 43(3): 544-552.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.244     OR     https://www.jcscp.org/EN/Y2023/V43/I3/544

Fig.1  SEM images of ABS substrates after etching for 10 min (a), 15 min (b), 20 min (c) and 25 min (d)
Fig.2  Contact angle of ABS as a function of etching time
Fig.3  Adhesion strength of the electroless copper on ABS substrate as a function of etching time
Fig.4  Deposition rate of electroless plating copper as a function of the addition concentration of L-malic acid in the plating bath
Fig.5  Variation of the deposition rate of electroless plating copper with the addition concentration of 2,2'-bidipyridine in the plating bath
Test numberFactor

Deposition rate

µm·h-1

Stability of solution

L-malic acid

mg·L-1

2,2'-bidipyridine

mg·L-1

110.54.9921Instability
211.04.4239Stability
311.54.2146Stability
412.04.2008Stability
520.55.9775Instability
621.05.2020Stability
721.55.0115Stability
822.04.9645Stability
930.55.3425Instability
1031.04.9526Stability
1131.54.7857Stability
1232.04.7024Stability
1340.55.0501Instability
1441.04.4629Stability
1541.54.3564Stability
1642.04.3256Stability
Table 1  Orthogonal test results of the effect of L-malic acid and 2,2 '- bipyridine on deposition rate
AdditiveK1K2K3K4k1k2k3k4R
L-malic acid17.831421.155519.783218.19504.45795.28884.94584.54870.8309
2,2'-bidipyridine21.362219.041418.368218.19335.34064.76044.59214.54830.7923
Table 2  Range analysis of the effect of L-malic acid and 2,2 '- bipyridine on the deposition rate
Fig.6  Variations of the deposition rate of electroless plating copper with the addition concentration of both L-malic acid and 2,2'-bidipyridine
Fig.7  Surface photos of electroless plating copper under the conditions of adding different agents: (a) without additional reagent, (b) 2 mg/L L- malic acid, (c) 1 mg/L 2,2'-bidipyridine, (d) 2 mg/L L- malic acid and 1 mg/L 2,2'-bidipyridine
Fig.8  SEM surface morphologies of electroless plating copper films under the conditions of adding different agents: (a) without additional reagent, (b) 2 mg/L L- malic acid, (c) 1 mg/L 2,2'-bidipyridine, (d) 2 mg/LL- malic acid and 1 mg/L2,2'-bidipyridine
Fig.9  Effects of the addition of both L-malic acid and 2,2'-bidipyridine on the anodic and cathodic polarization curves
1 Ghosh S. Electroless copper deposition: A critical review [J]. Thin Solid Films, 2019, 669: 641
doi: 10.1016/j.tsf.2018.11.016
2 Tang C H. Modern plating technologies: Part III—Electroless copper plating: industrial applications [J]. Electroplat. Finish., 2021, 40: 212
唐春华. 现代镀覆技术第三部分──化学镀铜(续2) [J]. 电镀与涂饰, 2021, 40: 212
3 Yin X B, Li Y Q, Gao R J. Preparation of superhydrophobic surface on copper substrate and its corrosion resistance [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 93
尹续保, 李育桥, 高荣杰. 铜基超疏水表面的制备及其耐蚀性研究 [J]. 中国腐蚀与防护学报, 2022, 42: 93
doi: 10.11902/1005.4537.2020.256
4 Liu H Y, Zhang X Q, Teng Y X, et al. Corrosion resistance and antifouling performance of copper-bearing low-carbon steel in marine environment [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 679
刘宏宇, 张喜庆, 滕莹雪 等. 含铜低碳钢在海洋环境下的耐蚀和防污性能的研究 [J]. 中国腐蚀与防护学报, 2021, 41: 679
doi: 10.11902/1005.4537.2020.242
5 Hanna F, Hamid Z A, Aal A A. Controlling factors affecting the stability and rate of electroless copper plating [J]. Mater. Lett., 2004, 58: 104
doi: 10.1016/S0167-577X(03)00424-5
6 Luo Y. Study on application of EDTA in copper plating [D]. Xi'an: Shanxi University of Science and Technology, 2014
罗 媛. EDTA在镀铜中应用的研究 [D]. 西安: 陕西科技大学, 2014
7 Gao W X, Ye J, Li Q L. Research on electroless copper plating of ABS plastic [J]. Zhejiang Chem. Ind., 2019, 50(3): 36
高万旭, 叶 健, 李全良. ABS塑料化学镀铜研究 [J]. 浙江化工, 2019, 50(3): 36
8 Ren B, Du N, Cui Y, et al. Influences of C4O6H4KNa on nucleation of copper in HEDP acid electrolyte [J]. Plat. Finish., 2016, 38(5): 5
任 兵, 杜 楠, 崔 宇 等. 酒石酸钾钠对HEDP镀铜形核的影响 [J]. 电镀与精饰, 2016, 38(5): 5
9 Kong D L, Xie J P, Fan X L, et al. Researches on stabilizers in electroless copper plating bath using quadrol and EDTA as complexing agent [J]. Plat. Finish., 2014, 36(3): 5
孔德龙, 谢金平, 范小玲 等. 化学镀铜溶液中稳定剂的研究 [J]. 电镀与精饰, 2014, 36(3): 5
10 Qin X, Wang J, Gao L Y, et al. Electrochemical study on electroless copper plating using formaldehyde as reductant [J]. Mater. Prot., 2020, 53(1): 125
秦 笑, 王 娟, 林高用 等. 甲醛法化学镀铜的电化学研究 [J]. 材料保护, 2020, 53(1): 125
11 Xiao Y J, Xu Y Z. Study on the additive for electroless copper plating taking the potassium sodium tartrate as the main complexing agent [J]. Surf. Technol., 2012, 41(5): 102
肖友军, 许永章. 以酒石酸钾钠为主络合剂的化学镀铜添加剂研究 [J]. 表面技术, 2012, 41(5): 102
12 Dela Pena E M, Roy S. Electrodeposited copper using direct and pulse currents from electrolytes containing low concentration of additives [J]. Surf. Coat. Technol., 2018, 339: 101
doi: 10.1016/j.surfcoat.2018.01.067
13 Chen W S, Luo G Q, Li M J, et al. Effect of 2, 2’-dipyridyl on the plating rate, microstructure and performance of copper-coated tungsten composite powders prepared using electroless plating [J]. Appl. Surf. Sci., 2014, 301: 85
doi: 10.1016/j.apsusc.2014.01.107
14 Lee H, Tsai S T, Wu P H, et al. Influence of additives on electroplated copper films and their solder joints [J]. Mater. Charact., 2019, 147: 57
doi: 10.1016/j.matchar.2018.10.029
15 Lu S, Ren Z B, Xie J Y, et al. Investigation of corrosion inhitibion behavior of 2-aminobenzothiazole and benzotriazole on copper surface [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 577
卢 爽, 任正博, 谢锦印 等. 2-氨基苯并噻唑与苯并三氮唑复配体系对Cu的缓蚀性能 [J]. 中国腐蚀与防护学报, 2020, 40: 577
16 Liu Y Q, Liu G M, Fan W X, et al. Effect of polyethylene Glycol-600 on Acidic Zn-Ni alloy electroplating and its corrosion resistance [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 235
刘永强, 刘光明, 范文学 等. 聚乙二醇-600对酸性Zn-Ni合金的电沉积行为及镀层耐蚀性影响的研究 [J]. 中国腐蚀与防护学报, 2022, 42: 235
doi: 10.11902/1005.4537.2021.084
17 Li L S, Li X R, Zhao W X, et al. A study of low temperature and low stress electroless copper plating bath [J]. Int. J. Electrochem. Sci., 2013, 8: 5191
18 Bian J, Wang Z L. Study on microetching of ABS plastic with MnO2-H2SO4-Na5P3O10 system prior to electroless copper plating [J]. Electroplat. Finish., 2014, 33: 474
边 佳, 王增林. MnO2-H2SO4-Na5P3O10体系对化学镀铜前ABS塑料表面微蚀的研究 [J]. 电镀与涂饰, 2014, 33: 474
19 Xu J S, Yu R, Liu D, et al. Effect of different pretreatment for ABS resin surface on electroless copperplating [J]. J. Funct. Mater., 2013, 44(S2): 350
徐久帅, 于 柔, 刘 丹 等. ABS树脂表面不同前处理工艺对化学镀铜的影响 [J]. 功能材料, 2013, 44(S2): 350
20 Xia S G, Li Z X, Wang Z L. Effects of etching conditions on the surface roughening effect of polycarbonate substrate [J]. Plat. Finish., 2011, 33(8): 1
夏曙光, 李志新, 王增林. 粗化条件对聚碳酸酯表面粗化效果的影响 [J]. 电镀与精饰, 2011, 33(8): 1
21 Ding J, Lu X B, Zan L X, et al. Study on chromium-free roughening with manganese dioxide for ABS engineering plastic surface [J]. Electroplat. Finish., 2012, 31(06): 27
丁 杰, 路旭斌, 昝灵兴 等. ABS工程塑料表面无铬二氧化锰微蚀粗化的研究 [J]. 电镀与涂饰, 2012, 31(06): 27
22 Huang J H, Shih P S, Renganathan V, et al. Development of high copper concentration, low operating temperature, and environmentally friendly electroless copper plating using a copper-glycerin complex solution [J]. Electrochim. Acta, 2022, 425: 140710
doi: 10.1016/j.electacta.2022.140710
[1] Zhihu WANG, Jumei ZHANG, Lijing BAI, Guojun ZHANG. Microstructure and Property of Composite Coatings on AZ91 Mg-alloy Prepared by Micro-arc Oxidation and Electroless Cu-layer[J]. 中国腐蚀与防护学报, 2018, 38(4): 391-396.
[2] ZHAO Qing,ZHANG Chuanbo,WANG Shuaixing,DU Nan,ZHAO Lin,LI Yuanyuan. Effect of 1.10-phenanthroline on Electroless Copper Plating Using Formaldehyde as Reductant[J]. 中国腐蚀与防护学报, 2013, 33(6): 515-520.
[3] XIAO Wei, SHAN Dayong, CHEN Rongshi. EFFECT OF PROCESS OF ELECTROLESS PLATING ON INVESTMENT CASTING ZA93 MAGNESIUM ALLOY[J]. 中国腐蚀与防护学报, 2012, 32(2): 90-94.
No Suggested Reading articles found!