Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (6): 894-902    DOI: 10.11902/1005.4537.2021.353
Current Issue | Archive | Adv Search |
Galvanic Corrosion Behavior for Coupling of Three Low Alloy Steels in Artificial Seawater at Low Temperatures
WANG Yuxin1, WU Bo1(), DAI Leyang1, HU Kefeng2, WU Jianhua1, YANG Yang1, YAN Fulei1, ZHANG Xianhui1
1. Xiamen Key Laboratory of Marine Corrosion and Intelligent Protection Materials, Jimei University, Xiamen 361021, China
2. Wuhan Second Ship Design Institute, Wuhan 430064, China
Cite this article: 

WANG Yuxin, WU Bo, DAI Leyang, HU Kefeng, WU Jianhua, YANG Yang, YAN Fulei, ZHANG Xianhui. Galvanic Corrosion Behavior for Coupling of Three Low Alloy Steels in Artificial Seawater at Low Temperatures. Journal of Chinese Society for Corrosion and protection, 2022, 42(6): 894-902.

Download:  HTML  PDF(9128KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The galvanic corrosion behavior of a coupling of 907A steel, 921A steel and 980 steel, in artificial seawater at different temperatures within the range of 0-20 ℃ was assessed by electrochemical method, mass loss method and morphology observation techniques. The results showed that at different temperatures, 907A steel acted as anode in the coupling, while 921A steel and 980 steel acted as cathode. The galvanic corrosion coefficient of 907A steel increased with the increasing temperature. Besides, galvanic corrosion may emerge to certain extent, for galvanic pairs of metals with close open circuit potential (<60 mV). The galvanic corrosion effect changed the uniform corrosion of 907A steel into local pitting corrosion, which might increase the failure risk of marine facility. For the control of such corrosion, the combination of protective coating and cathodic protection may be a better option.

Key words:  marine environment      low temperature      low alloy high strength steel      galvanic corrosion     
Received:  08 December 2021     
ZTFLH:  TG172  
Fund: National Key R&D Program of China(2020YFE0100100)
About author:  WU Bo, E-mail: wubo@jmu.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.353     OR     https://www.jcscp.org/EN/Y2022/V42/I6/894

Steel componentCSiMnSPNiCrCuVMoFe
907A≤0.1200.80-1.100.50-0.80≤0.015≤0.02000.50-0.800.60-0.900.40-0.6000Bal.
921A0.07-0.140.17-0.370.30-0.60≤0.015≤0.0202.60-3.000.90-1.2000.04-0.100.20-0.27Bal.
980≤0.110.17-0.370.40-0.70≤0.010≤0.0154.40-4.800.40-0.7000.03-0.090.30-0.55Bal.
Table 1  Chemical compositions of three low-alloy steels (mass fraction / %)
Fig.1  Top view of spatial arrangement of three working electr-odes (a) and electrochemical measurement cell (b)
Fig.2  Polarization curves of three low alloy steels at 20 oC in simulated artificial seawater containing 5 mg/L dissolved oxygen
SteelEcorr / VIcorr / μA·cm-2Corrosion rate / mm·a-1
907A-0.71205.5720.0511
921A-0.70545.4670.0499
980-0.69535.3780.0487
Table 2  Fitting results of polarization curves of three low alloy steels in simulated artificial seawater
Fig.3  Open circuit potentials (a) and corrosion current densities (b) of three low-alloy steels as functions of temperature
Fig.4  Electric potentials (a) and electric currents (b) of triple metal couple at 0 °C
Fig.5  Electric potentials (a) and electric currents (b) of triple metal couple as functions of temperature
Fig.6  Electrochemical impedance spectra of 907A (a, b), 921A (c, d) and 980 (e, f) low alloy steels before and after coupling
Fig.7  Equivalent circuit model used for EIS fitting analysis
Temperature / ℃ElectrodeRs / Ω·cm2QdL / μΩ-1·S n ·cm-2n1Rct / Ω·cm2Qoxide / μΩ-1·S n ·cm-2n2Roxide / Ω·cm2
0907A18.21683.30.87577545.30.816653
921A19.89667.80.86796133.30.834793
98019.87661.50.87898931.50.844813
Coupled 907A19.32854.20.85631552.10.838237
Coupled 921A20.23192.30.782173224.70.836638
Coupled 98020.87187.30.771221323.60.817898
10907A13.86723.50.86457776.30.695694
921A13.75695.40.84579564.50.819538
98015.21690.50.83183461.60.846684
Coupled 907A14.84877.20.88529886.70.889219
Coupled 921A14.87198.50.796152751.50.877634
Coupled 98015.21193.50.866195253.40.815685
20907A9.77813.50.84134481.40.875487
921A10.17731.40.86163169.80.811454
98010.27711.50.82272770.40.829511
Coupled 907A9.98892.40.81929089.10.837212
Coupled 921A9.52224.30.799132461.70.861598
Coupled 9809.86213.60.806150360.80.884618
Table 3  Fitting results of EIS of three low-alloy steels at different temperatures
Fig.8  Rct and Roxidevs. temperature curves for 907A steel before and after coupling
Fig.9  Mass losses of uncoupled and coupled three low alloy steels after corrosion at different temperatures
Fig.10  Variations of KC and PC with temperature
Fig.11  Protection degrees of 921A steel and 980 steel as functions of temperature
Fig.12  SEM images of three low-alloy steels without corrosion products after soaking in artificial seawater at 10 ℃ for 7 d: (a) uncoupled 907A, (b) uncoupled 921A, (c) uncoupled 980, (d) coupled 907A, (e) coupled 921A, (f) coupled 980
Fig.13  Pit morphologies (a) and pit depth measurement chart (b) of 907A steel
[1] Shen J, Ding X X, Song K Q, et al. Research progress on corrosion and protection of equipment materials in marine atmosphere [J]. Equip. Environ. Eng., 2020, 17(10): 103
(沈剑, 丁星星, 宋凯强 等. 海洋大气环境下装备材料的腐蚀与防护研究进展 [J]. 装备环境工程, 2020, 17(10): 103)
[2] Ding G Q, Yang Z H, Huang G Q, et al. Corrosion potentials and their change rules for ferrous metals in natural seawater [J]. Corros. Prot., 2018, 39: 99
(丁国清, 杨朝晖, 黄桂桥 等. 黑色金属在天然海水中的腐蚀电位及其变化规律 [J]. 腐蚀与防护, 2018, 39: 99)
[3] Mei W, Wang Z H, Zhang X, et al. Research progress of galvanic corrosion and protection technology of metal materials [J]. Hot Work. Technol., 2022, 51(4): 15
(梅婉, 王泽华, 张欣 等. 金属材料的电偶腐蚀及其防护技术研究进展 [J]. 热加工工艺, 2022, 51(4): 15)
[4] Hu S B, Liu R, Liu L, et al. Effect of hydrostatic pressure on the galvanic corrosion of 90/10 Cu-Ni alloy coupled to Ti6Al4V alloy [J]. Corros. Sci., 2020, 163: 108242
doi: 10.1016/j.corsci.2019.108242
[5] Xing P, Lu L, Li X G. Oxygen-concentration cell induced corrosion of E690 steel for ocean platform [J]. Chin. J. Mater. Res., 2016, 30: 241
(邢佩, 卢琳, 李晓刚. 海洋用高强钢E690氧浓差腐蚀行为研究 [J]. 材料研究学报, 2016, 30: 241)
doi: 10.11901/1005.3093.2015.507
[6] Niu X L, Chen C P. Research progress of corrosion protection of steel structure in marine engineering [J]. Ship Eng., 2019, 41(4): 100
(牛雪莲, 陈昌平. 海洋工程钢结构腐蚀防护的研究进展 [J]. 船舶工程, 2019, 41(4): 100)
[7] Wu X W, Huang L Q, Sun Q. Study on galvanic corrosion characteristics of metallic materials used in surface ships [J]. Mater. Prot., 2021, 54(4): 36
(武兴伟, 黄璐琼, 孙启. 舰船用金属材料的电偶腐蚀特性研究 [J]. 材料保护, 2021, 54(4): 36)
[8] Zhang T Y, He Y T, Zhang T, et al. Research status and development direction of galvanic corrosion and protection technology for heterogeneous structural materials [J]. Equip. Environ. Eng., 2020, 17(5): 40
(张天宇, 何宇廷, 张腾 等. 异种结构材料电偶腐蚀及防护技术的研究现状及发展方向 [J]. 装备环境工程, 2020, 17(5): 40)
[9] Fan W J, Zhang Y, Tian H W, et al. Corrosion behavior of two low alloy steel in simulative deep-sea environment coupling to titanium alloy [J]. Colloid Interface Sci. Commun., 2019, 29: 40
doi: 10.1016/j.colcom.2019.01.003
[10] Zhang X M, Chen Z Y, Luo H F, et al. Corrosion resistances of metallic materials in environments containing chloride ions: a review [J]. Trans. Nonferrous Met. Soc. China, 2022, 32: 377
doi: 10.1016/S1003-6326(22)65802-3
(张先满, 陈再雨, 罗洪峰 等. 金属材料在含氯化物水基环境中的耐腐蚀性能 [J]. 中国有色金属学报, 2022, 32: 377)
[11] Chen Y F, Li Z X, Liu L T, et al. Galvanic corrosion behavior of T2/TC4 galvanic couple in static artificial seawater [J]. Rare Met. Mater. Eng., 2019, 48: 1161
(陈云飞, 李争显, 刘林涛 等. T2/TC4在静态人造海水中的电偶腐蚀行为 [J]. 稀有金属材料与工程, 2019, 48: 1161)
[12] Du X Q, Yang Q S, Chen Y, et al. Galvanic corrosion behavior of copper/titanium galvanic couple in artificial seawater [J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 570
doi: 10.1016/S1003-6326(14)63097-1
(杜小青, 杨青松, 陈宇 等. Cu/Ti在模拟海水中的电偶腐蚀行为 [J]. 中国有色金属学报, 2014, 24: 570)
[13] Lei B, Hu S N, Lu Y F, et al. Galvanic corrosion behavior and electric insulation between B10 and a high strength steel in seawater environment for warship [J]. Corros. Prot., 2019, 40: 497
(雷冰, 胡胜楠, 卢云飞 等. 海水环境中B10合金与高强钢的电偶腐蚀行为与电绝缘防护技术 [J]. 腐蚀与防护, 2019, 40: 497)
[14] Xu Q, Liu Y P, Hu P F, et al. Analysis of galvanic corrosion behavior of stainless steel and hull steel in seawater [J]. Equip. Environ. Eng. 2022, 19(05): 126
(徐强, 刘亚鹏, 胡鹏飞 等. 不锈钢与船体钢在海水中的电偶腐蚀行为研究 [J]. 装备环境工程. 2022, 19(05): 126)
[15] Liang M H, Wu X Q, Xie F Q, et al. Effect of Cl- concentration on corrosion behavior of anodized 5A06 alloy/aluminum1Cr18Ni9Ti stainless steel coupling [J]. Surf. Technol. (2022-05-14).
(梁明辉, 吴向清, 谢发勤 等. Cl-浓度对阳极氧化5A06铝合金/1Cr18Ni9Ti不锈钢偶接件的腐蚀行为影响 [J]. 表面技术. (2022-05-14). )
[16] Zhao P P, Song Y W, Dong K H, et al. Study on the galvanic corrosion of Ti-Al coupling and control measurements [J]. Chin. J. Nonferrous Met. (2022-05-14).
(赵平平, 宋影伟, 董凯辉 等. 钛-铝连接时的电偶腐蚀及控制措施研究 [J]. 中国有色金属学报. (2022-05-14). )
[17] Chen Y L, Huang H L, Bian G X, et al. Test and simulation of effects of multi-electrode coupling on atmospheric corrosion of metals [J]. Acta Aeronaut. Astronaut. Sin., 2018, 39(6): 205
(陈跃良, 黄海亮, 卞贵学 等. 多电极偶接对金属大气腐蚀影响的试验与仿真 [J]. 航空学报, 2018, 39(6): 205)
[18] Tian Y Q, Chang W, Hu L H, et al. Risk of galvanic corrosion among API X65, 316L and inconel 625 [J]. Surf. Technol., 2016, 45(5): 128
(田永芹, 常炜, 胡丽华 等. APIX65、316L不锈钢及Inconel 625间电偶腐蚀风险研究 [J]. 表面技术, 2016, 45(5): 128)
[19] Zhang W Y. Progress in research on galvanic corrosion behavior and protection [J]. Total Corros. Control, 2018, 32(12): 51
(张文毓. 电偶腐蚀与防护的研究进展 [J]. 全面腐蚀控制, 2018, 32(12): 51)
[20] Chen Y L, Wang A D, Bian G X, et al. Simulation of galvanic corrosion of three electrodes in marine environment [J]. J. Beijing Univ. Aeronaut. Astronaut., 2018, 44: 1808
(陈跃良, 王安东, 卞贵学 等. 海洋环境下三电极的电偶腐蚀仿真 [J]. 北京航空航天大学学报, 2018, 44: 1808)
[21] Du M, Guo Q K, Zhou C J. Galvanic corrosion of carbon steel/titanium and carbon steel/titanium/navel brass in seawater [J]. J. Chin. Soc. Corros. Prot., 2006, 26: 263
(杜敏, 郭庆锟, 周传静. 碳钢/Ti和碳钢/Ti/海军黄铜在海水中电偶腐蚀的研究 [J]. 中国腐蚀与防护学报, 2006, 26: 263)
[22] Shi L J, Yang X Y, Song Y W, et al. Effect of corrosive media on galvanic corrosion of complicated tri-metallic couples of 2024 Al alloy/Q235 mild steel/304 stainless steel [J]. J. Mater. Sci. Technol., 2019, 35: 1886
doi: 10.1016/j.jmst.2019.04.022
[23] Zhang X M, Guo W M, Zhang H X, et al. Galvanic corrosion behavior of copper alloys in simulated deep-sea low temperature environment [J]. Corros. Prot., 2015, 36: 1161
(张晓梅, 郭为民, 张慧霞 等. 模拟深海低温环境中铜合金的电偶腐蚀行为 [J]. 腐蚀与防护, 2015, 36: 1161)
[24] Li S Y, Chen W. Galvanic coupling behavior on carbon steel/red copper in NaCl media [J]. Corros. Sci. Prot. Technol., 2000, 12: 300
(李淑英, 陈玮. 碳钢/紫铜在NaCl介质中的电偶行为 [J]. 腐蚀科学与防护技术, 2000, 12: 300)
[25] Shao Z F. Galvanic corrosion between different hull steels [J]. Dev. Appl. Mater, 1987, (6): 37
(邵壮藩. 不同船体钢之间的电偶腐蚀 [J]. 材料开发与应用, 1987, (6): 37)
[26] Zhang Y, Dai M A. Galvanic corrosion of ship-building steel couple with low potentialdifference in seawater [J]. J. Chin. Soc. Corros. Prot., 1993, 13: 86
(张英, 戴明安. 海水中舰船钢低电位差电偶的腐蚀 [J]. 中国腐蚀与防护学报, 1993, 13: 86)
[27] Akid R, Mills D J. A comparison between conventional macroscopic and novel microscopic scanning electrochemical methods to evaluate galvanic corrosion [J]. Corros. Sci., 2001, 43: 1203
doi: 10.1016/S0010-938X(00)00091-3
[28] Wang C L. Corrosion behavior of galvanic corrosion in multi-material system in marine environment [D]. Harbin: Harbin Engineering University, 2013
(王春丽. 海洋环境复杂偶合体系腐蚀行为研究 [D]. 哈尔滨: 哈尔滨工程大学, 2013)
[29] Okonkwo B O, Ming H L, Meng F J, et al. Galvanic corrosion study between low alloy steel A508 and 309/308 L stainless steel dissimilar metals: a case study of the effects of oxide film and exposure time [J]. J. Nucl. Mater., 2021, 548: 152853
doi: 10.1016/j.jnucmat.2021.152853
[30] Zhao Q Y, Wang H Y, Guo C, et al. Galvanic corrosion of low-hydrogen-embrittlement Cd-Ti 300M steel coupled with composite-coated TC4 titanium alloy in an industrial-marine atmospheric environment [J]. J. Mater. Eng. Perform., 2021, 30: 3872
doi: 10.1007/s11665-021-05698-0
[31] Ma Y T, Lei B, Li Y, et al. Pitting corrosion rate of super 13Cr tubing in simulated acid fracturing environment [J]. Corros. Sci. Prot. Technol., 2013, 25: 347
(马元泰, 雷冰, 李瑛 等. 模拟酸化压裂环境下超级13Cr油管的点蚀速率 [J]. 腐蚀科学与防护技术, 2013, 25: 347)
[1] LIU Guoqiang, ZHANG Dongfang, CHEN Haoxiang, FAN Zhihong, XIONG Jianbo, WU Qingfa. Electrochemical Corrosion Behavior of 2304 Duplex Stainless Steel in a Simulated Pore Solution in Reinforced Concrete Serving in Marine Environment[J]. 中国腐蚀与防护学报, 2024, 44(1): 204-212.
[2] BAI Xuehan, DING Kangkang, ZHANG Penghui, FAN Lin, ZHANG Huixia, LIU Shaotong. Accelerated Corrosion Test of AH36 Ship Hull Steel in Marine Environment[J]. 中国腐蚀与防护学报, 2024, 44(1): 187-196.
[3] SUN Shuo, DAI Jiaming, SONG Yingwei, AI Caijiao. Corrosion Behavior of Extruded EW75 Mg-alloy in Shenyang Industrial Atmosphere[J]. 中国腐蚀与防护学报, 2024, 44(1): 141-150.
[4] LIAO Minxing, LIU Jun, DONG Baojun, LENG Xuesong, CAI Zelun, WU Junwei, HE Jianchao. Effect of Salt Spray Environment on Performance of 1Cr18Ni9Ti Brazed Joint[J]. 中国腐蚀与防护学报, 2023, 43(6): 1312-1318.
[5] XING Shaohua, LIU Zhongye, LIU Jinzeng, BAI Shuyu, QIAN Yao, ZHANG Dalei. Galvanic Corrosion Behavior of ZCuSn5Pb5Zn5/B10 Couple in Flowing Seawater[J]. 中国腐蚀与防护学报, 2023, 43(6): 1339-1348.
[6] ZHANG Qinhao, ZHU Zejie, CAI Haoran, LI Xinran, MENG Xianze, LI Hao, WU Liankui, LUO Zhuangzhu, CAO Fahe. Performance of Pt/IrO x -pH Ultra-micro Electrochemical Sensor and its Application in Study of Galvanic Corrosion of Copper/Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(6): 1264-1272.
[7] NI Yumeng, YU Yingjie, YAN Hui, WANG Wei, LI Ying. Finite Element Study on Phase-selective Dissolution Mechanism of CuAl-NiC Abradable Seal Coating[J]. 中国腐蚀与防护学报, 2023, 43(4): 855-861.
[8] WANG Changgang, DANIEL Enobong Felix, LI Chao, DONG Junhua, YANG Hua, ZHANG Dongjiu. Corrosion Mechanisms of Carbon Steel- and Stainless Steel-bolt Fasteners in Marine Environments[J]. 中国腐蚀与防护学报, 2023, 43(4): 737-745.
[9] ZHOU Wenhui, SONG Jian, CHEN Zehao, YANG Lanlan, WANG Jinlong, CHEN Minghui, ZHU Shenglong, WANG Fuhui. Effect of Low Temperature Degradation on Tribological Properties of YSZ Thermal Barrier Coatings[J]. 中国腐蚀与防护学报, 2023, 43(2): 261-270.
[10] SONG Jian, ZHOU Wenhui, WANG Jinlong, SUN Wenyao, CHEN Minghui, WANG Fuhui. Corrosion Behavior of Block Materials of Yttria Stabilized Zirconia with Different Content of Y2O3 in Marine Environment[J]. 中国腐蚀与防护学报, 2023, 43(2): 359-364.
[11] XING Shaohua, LIU Jinzeng, BAI Shuyu, QIAN Yao, ZHANG Dalei, MA Li. Influence of Seawater Flow Speed on Galvanic Corrosion Behavior of B10/B30 Alloys Coupling[J]. 中国腐蚀与防护学报, 2023, 43(2): 391-398.
[12] SUN Shibin, ZHAO Ziming, GAO Zhenpeng, GONG Xuhui, WANG Dongsheng, QIANG Qiang, CHANG Xueting. Friction-corrosion Performance of Steels and Their Welding Zone for Composite Plate of 317L Stainless Steel/FH40 Low-temperature Marine Steel in Simulated Sea Waters at Different Temperatures[J]. 中国腐蚀与防护学报, 2023, 43(1): 69-76.
[13] LIU Jinzeng, XING Shaohua, QIAN Yao, ZHANG Dalei, MA Li. Galvanic Corrosion Behavior of 20# Steel/Tin Bronze Couple in Flowing Seawater[J]. 中国腐蚀与防护学报, 2023, 43(1): 127-134.
[14] LIU Zeqi, HE Xiaoxiao, QI Kang, HUANG Hualiang. Galvanic Corrosion Behavior for Galvanic Couple of AZ91D Mg-alloy/2002 Al-alloy in 0.5 mg/L NaCl Solution[J]. 中国腐蚀与防护学报, 2022, 42(6): 1016-1026.
[15] MEI Jiaxue, DU Zunfeng, ZHU Haitao. Ultimate Bearing Capacity of Ship Structure Based on Random Corrosion[J]. 中国腐蚀与防护学报, 2022, 42(4): 662-668.
No Suggested Reading articles found!