Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (1): 69-76    DOI: 10.11902/1005.4537.2022.013
Current Issue | Archive | Adv Search |
Friction-corrosion Performance of Steels and Their Welding Zone for Composite Plate of 317L Stainless Steel/FH40 Low-temperature Marine Steel in Simulated Sea Waters at Different Temperatures
SUN Shibin1, ZHAO Ziming1, GAO Zhenpeng2, GONG Xuhui2, WANG Dongsheng3, QIANG Qiang1, CHANG Xueting3()
1.Logistics Engineering College, Shanghai Maritime University, Shanghai 201306, China
2.Luoyang Ship Material Research Institute, Luoyang 471000, China
3.School of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
Download:  HTML  PDF(11417KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The performance of friction and corrosion of FH40 steel, 317L stainless steel and their welding zone of the explosive formed composite plate of FH40 steel/317L stainless steel was studied via UMT-2 multifunctional friction-wear tester with a grinding ball of alumina (Al2O3) in simulated environments of sea water and sea ice, respectively at different temperatures. Their microstructure and wear morphology were characterized by metallographic microscope, white light interferometer and scanning electron microscope. The results showed that with the decrease of temperature, from 20 ℃ to -20 ℃, the friction coefficient and wear loss of FH40 steel and the welding zone increase significantly, while 317L stainless steel changed only little. It should be emphasized on that the wear and corrosion loss of 317L stainless steel is much lower than that of FH40 steel and the welding zone in sea water, which confirmed the feasibility of 317L stainless steel as the shell material for icebreaker. In addition, the corrosion resistance of the steels was also assessed by means of measurements of electrochemical impedance and polarization curves in order to determine the effect of low temperature environment on the corrosion resistance of composite steel plate. The results showed that the corrosion rate of the welding zone was lower than FH40 steel both at room temperature and low temperature.

Key words:  stainless steel      FH40 steel      friction and wear      low temperature      clad sheet     
Received:  09 January 2022      32134.14.1005.4537.2022.013
ZTFLH:  TG174  
Fund: Technical Standard Project of Shanghai Science and Technology Commission(21DZ2205700);"Dawn" Plan of Shanghai Municipal Education Commission(19SG46);International Cooperation and Exchange Project of the Ministry of Science and Technology(CU03-29);Shanghai Deep Sea Material Engineering Technology Center(19DZ2253100)

Cite this article: 

SUN Shibin, ZHAO Ziming, GAO Zhenpeng, GONG Xuhui, WANG Dongsheng, QIANG Qiang, CHANG Xueting. Friction-corrosion Performance of Steels and Their Welding Zone for Composite Plate of 317L Stainless Steel/FH40 Low-temperature Marine Steel in Simulated Sea Waters at Different Temperatures. Journal of Chinese Society for Corrosion and protection, 2023, 43(1): 69-76.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.013     OR     https://www.jcscp.org/EN/Y2023/V43/I1/69

Fig.1  Cross-sectional metallograph of welded steel plate and sample positions
Fig.2  Metallographic photos of FH40 cryogenic steel (a) and 317L stainless steel (b)
Fig.3  Friction coefficients of FH40 low temperature steel (a), weld joint (b) and 317L stainless steel (c) under different temperature / medium conditions
SampleFH40Weld joint317L
20 ℃0.850.541.00
-5 ℃0.900.351.34
-20 ℃0.930.691.34
3.5%NaCl0.291.011.22
Table 1  Average friction coefficients of FH40 low temperature steel, weld joint and 317L stainless steel under different temperature/medium conditions
Fig.4  Grinding trace contour curves of FH40 low temperature steel (a), weld joint (b), 317L stainless steel (c), and their wear amounts (d)
Fig.5  Grinding crack photos (a, c) and EDS elemental mappings (b, d) of weld joint after wear tests under the conditions of dry friction in air (a, b) and seawater medium friction (c, d)
Fig.6  Grinding cracks photos of weld joint after wear test in air at 20 ℃ (a), and in 3.5%NaCl at 20 ℃ (b), -5 ℃ (c) and -20 ℃ (d)
Fig.7  Open circuit potentials of FH40 cryogenic steel, weld joint and 317L stainless steel in seawater
Fig.8  EIS of the weld joint after immersion in seawater for 1 d (a), 4 d (b), 7 d (c) and 10 d (d) and electrochemical equivalent circuit (e)
SampleRS / Ω·cm²QfnRf / Ω·cm²QdnRt / Ω·cm²
FH4011.3842.180.8219.1515.64×10-40.661488
Weld7.42612.990.7124.9117.66×10-40.721398
317L9.2811.410.7335673.33×10-40.563.01×104
Table 2  Fitting parameters of EIS of FH40 cryogenic steel, weld joint and 317L stainless steel after 10 d immersion in seawater
Fig.9  Potentiodynamic polarization curves of FH40 cryogenic steel, weld joint and 317L stainless steel after 10 d immersion in seawater
SampleIcorrμA·cm-2EcorrVSCEβcmV·dec-1βamV·dec-1C-rate 10-4 mm·a-1
FH407.13-0.69-9235640.3
Weld4.76-0.70-1719226.9
317L1.49-0.23-1331208.4
Table 3  Fitting results of polarization curves of FH40 cryogenic steel, weld joint and 317L stainless steel after 10 d immersion in seawater
1 Lang S Y. Development trend and Prospect of polar ships [J]. Mar. Equip. Mater. Mark., 2018, (5): 32
郎舒妍. 极地船舶发展动态及展望 [J]. 船舶物资与市场, 2018, (5): 32
2 Li Z F, Han C M, Liang S S, et al. The academic evolution from the arctic shipping routes to "Polar Silk Road" [J]. J. Beijing Jiaotong Univ. Soc. Sci. Ed., 2021, 20(4): 78
李振福, 韩春美, 梁珊珊 等. 北极航线到“冰上丝绸之路”的学术演进 [J]. 北京交通大学学报 (社会科学版), 2021, 20(4): 78
3 Chen M Y. Opening and utilization of Arctic waterway [J]. Straits Sci., 2018, (5): 3
陈明义. 北极航道的开通和利用 [J]. 海峡科学, 2018, (5): 3
4 Qi J. Key points of low temperature steel welding [J]. China Pet. Chem. Stand. Qual., 2017, 37: 82
齐军. 低温钢的焊接要点 [J]. 中国石油和化工标准与质量, 2017, 37: 82
5 Li W F, Huang Y. International code for ships operating in polar waters: challenges to polar shipping safety rules in China [J]. Adv. Polar Sci., 2016, 27: 146
6 Huang Q Q. China's polar cause for 40 years [N]. China Science Daily, 2021-09-23 (6)
黄庆桥. 中国极地事业 40年 [N]. 中国科学报, 2021-09-23 (6)
7 Wang G D. Technological innovation and development direction of iron and steel industry [J]. Iron Steel, 2015, 50(9): 1
王国栋. 钢铁行业技术创新和发展方向 [J]. 钢铁, 2015, 50(9): 1
8 Zha C H, Dai Y H, Yang M M. Manufacturing technology and application of stainless steel clad plate in China [J]. Steel Rolling, 2018, 35(6): 55
查春和, 戴燕红, 杨梅梅. 我国不锈钢复合板材的制造技术及应用 [J]. 轧钢, 2018, 35(6): 55
9 Chen R Z. Production practice for 304+Q235B clad plate by vacuum symmetrical rolling [J]. Steel Rolling, 2018, 35(3): 19
陈润泽. 真空对称轧制304+Q235B复合板生产实践 [J]. 轧钢, 2018, 35(3): 19
10 Wu J Y, Sun X J, Li J, et al. Effect of heat treatments on interfaces of hot rolled Q235-TA2 clad plate with a niobium interlayer [J] J. Iron Steel Res., 2018, 30: 177
吴静怡, 孙新军, 李建 等. 热处理对Nb中间层热轧Q235-TA2复合板界面的影响 [J]. 钢铁研究学报, 2018, 30: 177
11 Jin H R, Han M F. Finite element simulation and experimental study on hot compression of 316L/EH40 composite sample [J]. J. Plast. Eng., 2019, 26(6): 128
金贺荣, 韩民峰. 316L/EH40复合样件热压缩有限元模拟与实验研究 [J]. 塑性工程学报, 2019, 26(6): 128
12 Wu B N, Guo K, Yang X Y, et al. Effect of carbon content of substrate on the microstructure changes and tensile behavior of clad layer of stainless steel composites [J]. Mater. Sci. Eng., 2022, 831A: 142201
13 Saravanan S, Raghukandan K. Microstructure, strength and welding window of aluminum alloy-stainless steel explosive cladding with different interlayers [J]. Trans. Nonferrous Met. Soc. China, 2022, 32: 91
doi: 10.1016/S1003-6326(21)65780-1
14 Li Y W, Liu H T, Wang Z J, et al. Suppression of edge cracking and improvement of ductility in high borated stainless steel composite plate fabricated by hot-roll-bonding [J]. Mater. Sci. Eng., 2018, 731A: 377
15 Zhang W L, Zhang Z L, Wu Z L, et al. Effect of temperature on pitting corrosion behavior of 316L stainless steel in oilfield wastewater [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 143
张文丽, 张振龙, 吴兆亮 等. 温度对316L不锈钢在油田污水中点蚀行为的影响研究 [J]. 中国腐蚀与防护学报, 2022, 42: 143
16 Cheng Q D, Wang Y H. Effect of surface scratches on corrosion behavior of 304 stainless steel beneath droplets of solution (0.5 mol/L NaCl+0.25 mol/L MgCl2) [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 99
程琪栋, 王燕华. 表面划痕对304不锈钢液滴腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2022, 42: 99
17 Neville A, Hodgkiess T. An assessment of the corrosion behaviour of high-grade alloys in seawater at elevated temperature and under a high velocity impinging flow [J]. Corros. Sci., 1996, 38: 927
doi: 10.1016/0010-938X(96)00180-1
18 Yi P, Hou L F, Du H Y, et al. NaCl induced corrosion of three austenitic stainless steels at high temperature [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 288
伊璞, 侯利锋, 杜华云 等. 新型奥氏体不锈钢高温NaCl腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 288
19 Sun B Z, Zhou X C, Li X R, et al. Stress corrosion cracking behavior of 316L stainless steel with varying microstructure in ammonium chloride environment [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 811
孙宝壮, 周霄骋, 李晓荣 等. 不同组织的316L不锈钢在NH4Cl环境下应力腐蚀行为与机理 [J]. 中国腐蚀与防护学报, 2021, 41: 811
20 Ding Y, Wang L W, Liu D Y, et al. Microstructure and properties of dissimilar metal welded joints of low alloy steel and duplex stainless steel [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 295
丁奕, 王力伟, 刘德运 等. 低合金钢与双相不锈钢异种金属焊接接头组织和性能的研究 [J]. 中国腐蚀与防护学报, 2022, 42: 295
21 Wang D S, Wang S Y, Sun S B, et al. Reciprocating friction characteristics of marine arctic steel plate at dry state room temperature [J]. Surf. Technol., 2017, 46(8): 120
王东胜, 王士月, 孙士斌 等. 一种船用低温钢板在干态室温下的往复摩擦特性研究 [J]. 表面技术, 2017, 46(8): 120
[1] REN Wankai, LIAN Zhouyang, ZHOU Kang, LUO Zhengwei, WEI Wuji, ZHANG Xueying. Influence of Ammonia Desulfurization Liquid Components on Localized Corrosion Development Stage of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(6): 1392-1398.
[2] SHANG Qiang, MAN Cheng, PANG Kun, CUI Zhongyu, DONG Chaofang, CUI Hongzhi. Mechanism of Post-heat Treatment on Intergranular Corrosion Behavior of SLM-316L Stainless Steel with Different Carbon Contents[J]. 中国腐蚀与防护学报, 2023, 43(6): 1273-1283.
[3] LI Min, HU Lingyue, HU Kefeng, SONG Yao, ZHANG Zequn, LI Zongxin, ZHANG Bowei, DONG Chaofang, WU Junsheng. Crevice Corrosion Behavior of 316L Stainless Steel in Deep-sea Environment[J]. 中国腐蚀与防护学报, 2023, 43(6): 1375-1382.
[4] XUAN Xingyu, QU Shaopeng, ZHAO Xingya. Preparation and Performance of CeO2@MWCNTs/EP Composite Coatings[J]. 中国腐蚀与防护学报, 2023, 43(5): 992-1002.
[5] LI Jiayuan, ZENG Tianhao, LIU Youtong, WU Xiaochun. Corrosion Behavior of 4Cr16Mo Martensite Stainless Steel with 1% Cu Addition by Applied Stress[J]. 中国腐蚀与防护学报, 2023, 43(5): 1094-1100.
[6] LIU Wei. Asymmetric Surface Configuration for Electrochemical Noise Measurement on Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(5): 1151-1158.
[7] MAO Feixiong, ZHOU Yuting, YAO Wenqing, SHEN Xiang, XIAO Long, LI Minghui. Growth Kinetics of Steady-state Passive Film on Type 304 Stainless Steel Based on Point Defect Model[J]. 中国腐蚀与防护学报, 2023, 43(4): 911-921.
[8] WANG Changgang, DANIEL Enobong Felix, LI Chao, DONG Junhua, YANG Hua, ZHANG Dongjiu. Corrosion Mechanisms of Carbon Steel- and Stainless Steel-bolt Fasteners in Marine Environments[J]. 中国腐蚀与防护学报, 2023, 43(4): 737-745.
[9] LIANG Chaoxiong, LIANG Xiaohong, HAN Peide. Effect of a New Heat Treatment Process on B Elements Distribution, Second Phase Precipitation and Corrosion Resistance of S31254 Super Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(3): 639-646.
[10] HUANG Jiazhen, HUANG Tao, YANG Lijing, JI Dengping, DING He, WEI Yi, SONG Zhenlun. Electrochemical Properties and Offshore Corrosion Behavior of SAF 2304 Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(3): 630-638.
[11] WANG Yanfei, LI Yaozhou, HUANG Yuting, XIE Honglin, WU Weijie. Effect of Grain Size on Hydrogen Embrittlement of 304L Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(3): 494-506.
[12] HAN Ruizhu, JIA Jianwen, LI Yang, ZHANG Wei, XU Fanghong, HOU Lifeng, WEI Yinghui. Corrosion Behavior of Three Super Austenitic Stainless Steels in a Molten Salts Mixture at 650-750 ℃[J]. 中国腐蚀与防护学报, 2023, 43(2): 421-427.
[13] HE Zhihao, JIA Jianwen, LI Yang, ZHANG Wei, XU Fanghong, HOU Lifeng, WEI Yinghui. Passivation Behavior of Super Austenitic Stainless Steels in Simulated Flue Gas Desulfurization Condensate[J]. 中国腐蚀与防护学报, 2023, 43(2): 408-414.
[14] ZHOU Wenhui, SONG Jian, CHEN Zehao, YANG Lanlan, WANG Jinlong, CHEN Minghui, ZHU Shenglong, WANG Fuhui. Effect of Low Temperature Degradation on Tribological Properties of YSZ Thermal Barrier Coatings[J]. 中国腐蚀与防护学报, 2023, 43(2): 261-270.
[15] ZHANG Xiaoli, XUN Maonian, LIANG Xiaohong, ZHANG Caili, HAN Peide. Precipitation of Second Phase and Its Effect on Corrosion Resistance of Ce-containing S31254 Super Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(2): 384-390.
No Suggested Reading articles found!