Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2021, Vol. 41 Issue (5): 617-624    DOI: 10.11902/1005.4537.2020.213
Current Issue | Archive | Adv Search |
Composition Design and Corrosion Resistance of Mg Microallyed X70 Grade Acid Resistant Submarine Pipeline Steel (X70MOS)
LANG Fengjun1,2,3, HUANG Feng2,3(), XU Jinqiao3, LI Liwei3, YUE Jiangbo3, LIU Jing1,2
1.The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
2.Hubei Engineering Technology Research Center of Marine Materials and Service Safety, Wuhan University of Science and Technology, Wuhan 430081, China
3.Baosteel Central Research Institute, Wuhan 430080, China
Download:  HTML  PDF(4874KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion rate of X70 submarine pipeline steel with alloying element addition in the so called NACE A medium and 3.5%NaCl solution was calculated by means of OLI analyzer studio software in order to simulate the corrosion situation of inner side and outer side of the real pipeline in service. Under the premise of ensuring the mechanical properties of X70 submarine pipeline steel, experimental X70MOS steels without and with 0.003% Mg-addition were designed and rolled. Then their corrosion resistance and hydrogen induced cracking (HIC) susceptibility were studied via electrochemical techniques in accord with NACE TM 0284-2016 standard. The results showed that corrosion rate of X70MOS steel with Mg-addition was lower than both that without Mg-addition and X70 submarine pipeline steel by 14.3% and 73.3% respectively in NACE A solution, and decreased by 52.8% and 80.4% respectively in 3.5% NaCl solution. The HIC susceptibility of the Mg-alloyed experimental steel with finely dispersed inclusions was lower than that of X70MOS steel without Mg-addition and X70 submarine pipeline steel. The development of X70MOS steel with 0.003% Mg-addition can enhance the corrosion resistance of the designed steel.

Key words:  X70MOS steel      Mg-treatment      composition design      corrosion resistance     
Received:  27 October 2020     
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(51871172);Central to Guide Local Technology Development Program(2018ZYYD026)
Corresponding Authors:  HUANG Feng     E-mail:  huangfeng@wust.edu.cn
About author:  HUANG Feng, E-mail: huangfeng@wust.edu.cn

Cite this article: 

LANG Fengjun, HUANG Feng, XU Jinqiao, LI Liwei, YUE Jiangbo, LIU Jing. Composition Design and Corrosion Resistance of Mg Microallyed X70 Grade Acid Resistant Submarine Pipeline Steel (X70MOS). Journal of Chinese Society for Corrosion and protection, 2021, 41(5): 617-624.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2020.213     OR     https://www.jcscp.org/EN/Y2021/V41/I5/617

Fig.1  Electrochimical analysis system
Fig.2  Samples size (mm) and the illustration of related inspecting profile
Fig.3  Relation curves of Cu (a), Cr (b), Ni (c) and Mo (d) addition and X70 submarine pipeline steel corrosion rate
SampleCSiMnCuCrNiMoAlNb+V+TiMgFe
1#0.040.251.20---0.250.120.160.009≤0.10.003Bal.
2#0.060.230.960.340.460.160.320.017≤0.1---Bal.
3#0.060.241.540.020.310.010.0030.039≤0.1---Bal.
Table 1  Chemical compositions of three kinds of steel (mass fraction / %)
SampleStrength / MPaImpact energy -30 ℃ / JHardness HV10Bend
Rt0.5RmRt0.5 / Rm
1#5256370.83280207Pass
2#5076800.75275210Pass
3#5866510.90189229Pass
Table 2  Mechanical properties of three kinds of steel
Fig.4  Microstructures (a~c) and inclusions images (d~f) of 1# sample (a, d) , 2# sample (b, e) and 3# (c, f) sample steel
Fig.5  Statistics of type, quantity and size of inclusions in 1# sample (a), 2# sample (b), 3# (c) sample steel
Fig.6  Polarization curves of three kinds of steel in NACE A solution (a) and 3.5%NaCl solution (b)
SampleNACE A3.5%NaCl
ESCE / mVI / mA·cm-2V / mm·a-1ESCE / mVI / mA·cm-2V / mm·a-1
1#-5840.0660.772-6780.0080.094
2#-5850.0770.901-6880.0170.199
3#-6320.2472.890-6920.0410.480
Table 3  Polarization curve Tafel active zone fitting parameters and calculated corrosion rate
Fig.7  Nyquist curves of three kinds of steel in NACE A solution (a), 3.5%NaCl solution (b) and fitting circuit diagram of Nyquist curves (c)
SampleNACE A3.5%NaCl
Rs / Ω·cm-2Q / μF·cm-2nRp / Ω·cm-2L / H·cm-2RL / Ω·cm-2Rs / Ω·cm-2Q / μF·cm-2nRp / Ω·cm-2L / H·cm-2RL / Ω·cm-2
1#161350.8235215382397213150.811415105903709
2#162280.81287773825213440.821118121503756
3#162360.821905511195215000.84649195903957
Table 4  Fitting parameters of Nyquist curves of three kinds of steel
Fig.8  Photograph of HIC samples: (a) 1# sample, (b) 2# sample, (c) 3# sample
Fig.9  Morphology (a) and EDS pattern (b) of the cross profile under hydrogen bubbling
1 Gan L J, Huang F, Zhao X Y, et al. Hydrogen trapping and hydrogen induced cracking of welded X100 pipeline steel in H2S environments [J]. Int. J. Hydrogen Energy, 2018, 43: 2293
2 Huang F, Liu J, Deng Z J, et al. Effect of microstructure and inclusions on hydrogen induced cracking susceptibility and hydrogen trapping efficiency of X120 pipeline steel [J]. Mater. Sci. Eng., 2010, 527A: 6997
3 Peng Z X, Liu J, Huang F, et al. Effect of submicron-scale MnS inclusions on hydrogen trapping and HIC susceptibility of X70 pipeline steels [J]. Steel Res. Int., 2018, 89: 1700566
4 Wei W R, Liang Y, Hou J, et al. Localization of steel pipe used for natural gas transportation in south china sea [J]. Welded Pipe Tube, 2015, 38(3): 24
魏伟荣, 梁羽, 侯静等. 南海深水天然气输送海底管线钢管的国产化 [J]. 焊管, 2015, 38(3): 24
5 Wu W, Liu Z Y, Li X G, et al. Electrochemical characteristic and stress corrosion behavior of API X70 high-strength pipeline steel under a simulated disbonded coating in an artificial seawater environment [J]. J. Electroanal. Chem., 2019, 845: 92
6 Zafar M N, Rihan R, Al-Hadhrami L. Evaluation of the corrosion resistance of SA-543 and X65 steels in emulsions containing H2S and CO2 using a novel emulsion flow loop [J]. Corros. Sci., 2015, 94: 275
7 Wu H B, Liu Y T, Wang L D, et al. Influence of Cr Content on microstructures and acid corrosion properties of X120 grade pipeline steel [J]. J. Mater. Eng., 2013, (9): 32
武会宾, 刘跃庭, 王立东等. Cr含量对X120级管线钢组织及耐酸性腐蚀性能的影响 [J]. 材料工程, 2013, (9): 32
8 Zhang C Y, Chen X Q, Chen D B, et al. Research of pitting susceptibility in low carbon steels and mechanism of pitting initiation [J]. J. Chin. Soc. Corros. Prot., 2001, 21: 265
张春亚, 陈学群, 陈德斌等. 不同低碳钢的点蚀诱发敏感性及诱发机理研究 [J]. 中国腐蚀与防护学报, 2001, 21: 265
9 Qu Y M, Huang F, Liu J, et al. Influence of microstructure on hydrogen induced cracks susceptibility and hydrogen trapping efficiency for X80 pipeline steel [J]. Chin. J. Mater. Res., 2010, 24: 508
曲炎淼, 黄峰, 刘静等. 显微组织对X80钢氢致裂纹敏感性和氢捕获效率的影响 [J]. 材料研究学报, 2010, 24: 508
10 Findley K O, O’Brien M K, Nako H. Critical assessment 17: mechanisms of hydrogen induced cracking in pipeline steels [J]. Mater. Sci. Technol, 2015, 31: 1673
11 Wang R Z, Yang J, Zhu K, et al. Comparison between the results of oxide metallurgy with Ca deoxidation and Mg deoxidation [J]. Steelmaking, 2016, 32(3): 50
王睿之, 杨健, 祝凯等. 钙脱氧和镁脱氧的氧化物冶金工艺效果对比 [J]. 炼钢, 2016, 32(3): 50
12 Kimura S, Nakajima K, Mizoguchi S. Behavior of alumina-magnesia complex inclusions and magnesia inclusions on the surface of molten low-carbon steels [J]. Metall. Mater. Trans., 2001, 32B: 79
13 Yang J, Yamasaki T, Kuwabara M. Behavior of inclusions in deoxidation process of molten steel with in situ produced Mg vapor [J]. ISIJ Int., 2007, 47: 699
14 Peng Z X, Liu J, Huang F, et al. Comparative study of non-metallic inclusions on the critical size for HIC initiation and its influence on hydrogen trapping [J]. Int. J. Hydrogen Energy, 2020, 45: 12616
15 Wang L W, Xin J C, Chen L J, et al. Influence of inclusions on initiation of pitting corrosion and stress corrosion cracking of X70 steel in near-neutral pH environment [J]. Corros. Sci., 2019, 147: 108
16 Huang F, Li X G, Liu J, et al. Hydrogen-induced cracking susceptibility and hydrogen trapping efficiency of different microstructure X80 pipeline steel [J]. J. Mater. Sci., 2011, 46: 715
[1] FENG Yanpeng, ZHANG Xian, WU Kaiming, YANG Miao. Influence of Heat Treatment Process on Microstructure and Corrosion Resistance of Ultrafine Bainite Steel[J]. 中国腐蚀与防护学报, 2021, 41(5): 602-608.
[2] WU Lintao, ZHOU Zehua, ZHANG Xin, YANG Guangheng, ZHANG Kaicheng, WANG Guangyu. Long-term Corrosion Resistance of Plasma Sprayed FeCrMoCBY Fe-based Amorphous Coating in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(5): 717-720.
[3] LIU Hongyu, ZHANG Xiqing, TENG Yingxue, LI Shengli. Corrosion Resistance and Antifouling Performance of Copper-bearing Low-carbon Steel in Marine Environment[J]. 中国腐蚀与防护学报, 2021, 41(5): 679-685.
[4] YANG Guangheng, ZHOU Zehua, ZHANG Xin, WU Lintao, MEI Wan. Influence of Magnetic Field on Corrosion Behavior of Al-Mg Alloys with Different Mg Content[J]. 中国腐蚀与防护学报, 2021, 41(5): 633-638.
[5] ZHANG Haoran, WU Hongyan, WANG Shanlin, ZUO Yao, CHEN Yuhua, YIN Limeng. Pitting Behavior of Fe-based Amorphous Alloy with Sulfide Inclusion[J]. 中国腐蚀与防护学报, 2021, 41(4): 477-486.
[6] SHI Jian, HU Xuewen, HE Bo, YANG Zheng, GUO Rui, WANG Fei. Sulfuric Acid Corrosion Resistance of Q345NS Steel Welded Joint[J]. 中国腐蚀与防护学报, 2021, 41(4): 565-570.
[7] WANG Xiaoge, GAO Kewei, YAN Luchun, YANG Huisheng, PANG Xiaolu. Effect of Ce on Corrosion Resistance of Films of ZnAlCe-layered Double Hydroxides on Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(3): 335-340.
[8] WANG Dongliang, DING Huaping, MA Yunfei, GONG Pan, WANG Xinyun. Research Progress on Corrosion Resistance of Metallic Glasses[J]. 中国腐蚀与防护学报, 2021, 41(3): 277-288.
[9] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[10] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[11] BAO Ren, ZHOU Genshu, LI Hongwei. Preparation of High-tin Bronze Corrosion-resistant Coating by Potentiostatic Pulse Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[12] LIU Haixia, HUANG Feng, YUAN Wei, HU Qian, LIU Jing. Corrosion Behavior of 690 MPa Grade High Strength Bainite Steel in a Simulated Rural Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[13] LI Congwei, DU Shuangming, ZENG Zhilin, LIU Eryong, WANG Feihu, MA Fuliang. Effect of Current Density on Microstructure, Wear and Corrosion Resistance of Electrodeposited Ni-Co-B Coating[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[14] CAO Jingyi, FANG Zhigang, CHEN Jinhui, CHEN Zhixiong, YIN Wenchang, YANG Yange, ZHANG Wei. Preparation and Properties of Micro-arc Oxide Film with Single Dense Layer on Surface of 5083 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[15] WANG Le,YI Danqing,LIU Huiqun,JIANG Long,FENG Chun. Effect of Ru on Corrosion Behavior of Ti-6Al-4V Alloy and Its Mechanism[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
No Suggested Reading articles found!