Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (3): 369-377    DOI: 10.11902/1005.4537.2021.162
Current Issue | Archive | Adv Search |
Characteristics and Mechanisms of Elemental Sulfur Induced Corrosion of Sulfur-resistant Steels in Wet Flow CO2 Environment
LIU Yichao1, ZHONG Xiankang1,2(), HU Junying1
1.School of Oil and Natural Gas Engineering, Southwest Petroleum University, Chengdu 610500, China
2.State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu 610500, China
Download:  HTML  PDF(6930KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The characteristics and mechanisms of elemental sulfur induced corrosion of P110SS sulfur-resistant steel in wet flow carbon dioxide atmosphere of various flux and relative humidity at different temperatures were investigated by means of X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), in terms of the composition and morphology of the corrosion product and the substrate steel. The results show that the elemental sulfur does not corrode P110SS at 60 ℃ in the wet flow CO2 with 30% relative humidity, however when the relative humidity reaches to 60% or higher, the elemental sulfur may participate in the cathodic reaction to generate S2-, which in turn combines with Fe2+ to produce FeS. As the temperature reaches to 80 ℃, the elemental sulfur becomes more active and may react with the steel to form FeS even in the flow CO2 with 30% relative humidity. When the relative humidity reaches to 60% or higher at 80 ℃, the elemental sulfur starts to hydrolyze, generating H2SO4 and H2S, which aggravates the corrosion of the steel. Furthermore, when the CO2 flux with high humidity at high temperature, FeS will also catalyze the hydrolysis of the elemental sulfur to form more SO42- and S2-. Finally, the thickness of the corrosion product increases with the increasing humidity and the density of the corrosion product decreases with the increasing temperature. Therefore, the findings of this study can provide a reference for the prevention and control of the elemental sulfur corrosion of sulfur-resistant steels.

Key words:  humid environment      elemental sulfur corrosion      P110SS sulfur-resistant steel      corrosion characteristics      corrosion mechanisms     
Received:  13 July 2021     
ZTFLH:  TG172  
Fund: National Natural Science Foundation of China(52171080);Scientific and Technological Innovation Team for the Safety of Petroleum Tubular Goods in Southwest Petroleum University(2018CXTD01)
Corresponding Authors:  ZHONG Xiankang     E-mail:  zhongxk@yeah.net
About author:  ZHONG Xiankang, E-mail: zhongxk@yeah.net

Cite this article: 

LIU Yichao, ZHONG Xiankang, HU Junying. Characteristics and Mechanisms of Elemental Sulfur Induced Corrosion of Sulfur-resistant Steels in Wet Flow CO2 Environment. Journal of Chinese Society for Corrosion and protection, 2022, 42(3): 369-377.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.162     OR     https://www.jcscp.org/EN/Y2022/V42/I3/369

Fig.1  Metallographic structure of P110SS steel
Fig.2  Schematic diagrams of the experimental setup
Temperature of reaction bottle / ℃CO2 flux mL·min-1H2O temperature of humidity making bottle / ℃Relative humidity of reaction bottle / %
60202530 (±5)
404560 (±5)
607090 (±5)
80302530 (±5)
605060 (±5)
607090 (±5)
Table 1  Relative humidity of the reaction containers
Fig.3  XPS spectra of S 2p3/2 (a), Fe 2p3/2 (b) and Mo 3d3/2 (c) of different relative humidity at 60 ℃
Temperature ℃

Relative

humidity / %

Spectra

Position

eV

Component

Peak

area / %

Temperature ℃

Relative

humidity / %

Spectra

Position

eV

Component

Peak

area / %

6030S 2p3/2163.6S81008030S 2p3/2163.6S858.96
Fe 2p3/2711.5FeOOH68.51161.4FeS41.04
710.7Fe3O49.40Fe 2p3/2712.1FeS18.29
710.2FeCO322.09711.1Fe2O353.82
60S 2p3/2164.8S25.66710.2FeCO327.89
163.6S861.2260S 2p3/2167.5Na2SO430.64
161.4FeS13.12164.8S18.19
Fe 2p3/2712.1FeS35.58163.6S849.02
710.7Fe3O427.24161.4FeS2.15
710.2FeCO327.49Fe 2p3/2712.1FeS18.21
709.9Fe2O39.70711.1Fe2O315.57
90S 2p3/2163.6S833.06710.2FeCO366.22
162.2MoS213.8490S 2p3/2168.6FeSO414.61
161.4FeS53.10163.5MoS260.69
Fe 2p3/2712.1FeS18.41162.0FeS214.08
710.2FeCO36.52161.4FeS10.62
709.9Fe2O375.07Fe 2p3/2713.6FeSO410.88
Mo 3d3/2235.08MoOx30.00711.1Fe2O381.85
232.3MoS230.00710.2FeCO33.31
231.7MoO340.00706.8FeS23.96
Mo 3d3/2235.6MoOx65.00
232.3MoS235.00
Table 2  XPS peak positions and peak areas for the components of corrosion products under different conditions
Fig.4  XPS spectra of S 2p3/2 (a), Fe 2p3/2 (b) and Mo 3d3/2 and (c) of different relative humidity at 80 ℃
Fig.5  SEM images of micro-morphologies of corrosion product under 30%RH/60 ℃ (a), 60%RH/60 ℃ (b), 90%RH/60 ℃ (c), 30%RH/80 ℃ (d), 60%RH/80 ℃ (e) and 90%RH/80 ℃ (f)
Fig.6  SEM images of cross-sectional views of corrosion product under 30%RH/60 ℃ (a), 60%RH/60 ℃ (b), 90%RH/60 ℃ (c), 30%RH/80 ℃ (d), 60%RH/80 ℃ (e) and 90%RH/80 ℃ (f)
Fig.7  SEM images of micro-morphologies of P110SS steel surface under 30%RH/60 ℃ (a), 60%RH/60 ℃ (b), 90%RH/60 ℃ (c), 30%RH/80 ℃ (d), 60%RH/80 ℃ (e) and 90%RH/80 ℃ (f)
Fig.8  SEM images of micro-morphologies of P110SS steel surface without elemental sulfur under 30%RH/60 ℃
1 Mao T. Research on elemental sulfur corrosion and control technology in high sulfur gas fields [D]. Chengdu: Southwest Petroleum University, 2017
毛汀. 高含硫气田元素硫腐蚀及控制技术研究 [D]. 成都: 西南石油大学, 2017
2 Ge P L, Zeng W G, Xiao W W, et al. Effect of applied stress and medium flow on corrosion behavior of carbon steel in H2S/CO2 coexisting environment [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 271
葛鹏莉, 曾文广, 肖雯雯等. H2S/CO2共存环境中施加应力与介质流动对碳钢腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 271
3 Santos J P L, Lobato A K C L, Moraes C, et al. Determination of elemental sulfur deposition rates for different natural gas compositions [J]. J. Petroleum Sci. Eng., 2015, 135: 461
4 Li J L, Zhu S D, Qu C T, et al. Research progress on corrosion of elemental sulfur [J]. Hot Work. Technol., 2015, 44(2): 20
李金灵, 朱世东, 屈撑囤等. 元素硫腐蚀研究进展 [J]. 热加工工艺, 2015, 44(2): 20
5 MacDonald D D, Roberts B, Hyne J B. The corrosion of carbon steel by wet elemental sulphur [J]. Corros. Sci., 1978, 18: 411
6 Maldonado-Zagal S B, Boden P J. Hydrolysis of elemental sulphur in water and its effect on the corrosion of mild steel [J]. Br. Corros. J., 1982, 17: 116
7 Schmitt G. Effect of elemental sulfur on corrosion in sour gas systems [J]. Corrosion, 1991, 47: 285
8 Wilken G. Effect of environmental factors on downhole sour gas corrosion [A], Corrosion 96 [C]. Denver, Colorado: NACE International, 1996
9 Zhang L, Wang X, Wen Z, et al. Interactive effects of H2S and elemental sulfur on corrosion of steel [C]. Corrosion, 2012. OnePetro, 2012
10 Gee R, Chen Z Y. Hydrogen embrittlement during the corrosion of steel by wet elemental sulphur [J]. Corros. Sci., 1995, 37: 2003
11 Yang J Q, Zhang Z H, Zhang C X, et al. Selection and evaluation of low alloy steel for sour service [J]. Chem. Eng. Oil Gas, 2014, 43: 275
杨建强, 张忠铧, 张春霞等. 低合金钢抗硫油套管选材与评价方法 [J]. 石油与天然气化工, 2014, 43: 275
12 Zhang N Y, Zeng D Z, Zhang Z, et al. Effect of flow velocity on pipeline steel corrosion behaviour in H2S/CO2 environment with sulphur deposition [J]. Corros. Eng. Sci. Technol., 2018, 53: 370
13 National Standardization Management Committee. Petroleum and natural gas industries—Material for use in H2S-containing environments in oil and gas production—Part 3: Cracking-resistant CRAs (corrosion-resistant alloys) and other alloys [S]. Beijing: China Standards Press, 2009
国家标准化管理委员会. 石油天然气工业 油气开采中用于含硫化氢环境的材料 第3部分: 抗开裂耐蚀合金和其他合金 [S]. 北京: 中国标准出版社, 2009
14 Thomas J M, Adams I, Williams R H, et al. Valence band structures and core-electron energy levels in the monochalcogenides of gallium. Photoelectron spectroscopic study [J]. J. Chem. Soc. Farad. Trans., 1972, 68: 755
15 Peisert H, Chassé T, Streubel P, et al. Relaxation energies in XPS and XAES of solid sulfur compounds [J]. J. Electr. Spectrosc. Relat. Phenom., 1994, 68: 321
16 Patterson T A, Carver J C, Leyden D E, et al. A surface study of cobalt-molybdena-alumina catalysts using x-ray photoelectron spectroscopy [J]. J. Phys. Chem., 1976, 80: 1700
17 Alt H, Binder H, Sandstede G. Mechanism of the electrocatalytic reduction of oxygen on metal chelates [J]. J. Catal., 1973, 28: 8
18 Tan B J, Klabunde K J, Sherwood P M A. X-ray photoelectron spectroscopy studies of solvated metal atom dispersed catalysts. Monometallic iron and bimetallic iron-cobalt particles on alumina [J]. Chem. Mater., 1990, 2: 186
19 Marcus P, Grimal J M. The anodic dissolution and passivation of NiCrFe alloys studied by ESCA [J]. Corros. Sci., 1992, 33: 805
20 Li D G, Feng Y R, Bai Z Q, et al. Characteristics of CO2 corrosion scale formed on N80 steel in stratum water with saturated CO2 [J]. Appl. Surf. Sci., 2007, 253: 8371
21 Paparazzo E. XPS and auger spectroscopy studies on mixtures of the oxides SiO2, Al2O3, Fe2O3 and Cr2O3 [J]. J. Electr. Spectrosc. Relat. Phenom., 1987, 43: 97
22 Anwar M, Hogarth C A, Bulpett R. Effect of substrate temperature and film thickness on the surface structure of some thin amorphous films of MoO3 studied by X-ray photoelectron spectroscopy (ESCA) [J]. J. Mater. Sci., 1989, 24: 3087
23 Zhuang S X, Hall W K, Ertl G, et al. X-ray photoemission study of oxygen and nitric oxide adsorption on MoS2 [J]. J. Catal., 1986, 100: 167
24 Cáceres C V, Fierro J L G, Lázaro J, et al. Effect of support on the surface characteristics of supported molybdena catalysts [J]. J. Catal., 1990, 122: 113
25 Bai H T, Yang M, Dong X W, et al. Research progress on CO2 corrosion product scales of carbon steels [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 295
白海涛, 杨敏, 董小卫等. CO2腐蚀产物膜的研究进展 [J]. 中国腐蚀与防护学报, 2020, 40: 295
26 Kruizenga A M. Corrosion mechanisms in chloride and carbonate salts [R]. Livermore: Sandia National Laboratories, 2012
27 Zheng S Q, Li C Y, Qi Y M, et al. Mechanism of (Mg, Al, Ca)-oxide inclusion-induced pitting corrosion in 316L stainless steel exposed to sulphur environments containing chloride ion [J]. Corros. Sci., 2013, 67: 20
28 Lindberg B J, Hamrin K, Johansson G, et al. Molecular spectroscopy by means of ESCA II. Sulfur compounds. Correlation of electron binding energy with structure [J]. Phys. Scr., 1970, 1: 286
29 Swartz W E, Hercules D M. X-ray photoelectron spectroscopy of quaternary phosphonium compounds [J]. Anal. Chem., 1971, 43: 1066
30 Durbin T D, Lince J R, Didziulis S V, et al. Soft X-ray photoelectron spectroscopy study of the interaction of Cr with MoS2(0001) [J]. Surf. Sci., 1994, 302: 314
31 Karthe S, Szargan R, Suoninen E. Oxidation of pyrite surfaces: A photoelectron spectroscopic study [J]. Appl. Surf. Sci., 1993, 72: 157
32 Goonasekere K G A. A case study of irrigation water management at Kaudulla irrigation scheme and development of water management alternatives for the dry zone of Sri Lanka [D]. Blacksburg: Virginia Polytechnic Institute and State University, 1985
33 Seyama H, Soma M. Fe 2p spectra of silicate minerals [J]. J. Electr. Spectrosc. Relat. Phenom., 1987, 42: 97
34 Chen T H, Xu L N, Chang W, et al. Influence of Cr contents and temperatures on the CO2 corrosion resistance of low Cr bearing linepipe steel [J]. Nat. Gas Ind., 2011, 31(9): 93
陈太辉, 许立宁, 常炜等. Cr含量和温度对低Cr管线钢抗CO2腐蚀的影响 [J]. 天然气工业, 2011, 31(9): 93
35 Lin H C, Lv M, Yang X Q, et al. Potential phase changes during extraction of very high H2S-bearing gas wells [J]. Corros. Sci. Prot. Technol., 1992, 4: 308
林海潮, 吕明, 杨秀清等. 特高含H2S气井开采过程中可能发生的相态变化及其影响 [J]. 腐蚀科学与防护技术, 1992, 4: 308
36 Deng T, Ke J J, Chen J Y. Kinetics of disproportionation of elemental sulfur in aqueous solutions [J]. J. Chem. Ind. Eng. (China), 1984, 4: 328
邓彤, 柯家骏, 陈家镛. 元素硫的歧化反应动力学研究 [J]. 化工学报, 1984, 4: 328
37 Yang L Q. The study of the elemental sulfur corrosion mechanism of X65 pipeline steel under the suspended sulfur environment [D]. Xi'an: Northwest University, 2017
[1] HUANG Zhaoxin, ZHU Zhiping, ZHOU Pan, JIANG Yuankang, HE Mingpeng, WANG Zhenggang. Corrosion Characteristics of Propylene Glycol Antifreeze in Valve Cooling System of Converter Station[J]. 中国腐蚀与防护学报, 2022, 42(3): 471-478.
[2] Dongliang LI,Guiqin FU,Miaoyong ZHU. Effect of Si on Corrosion Behavior of Model Bridge Steels by Alternative Wetting/drying Test in an Artificial Medium Simulated Hot and Humid Atmosphere of Marine and Industrial Area[J]. 中国腐蚀与防护学报, 2016, 36(5): 433-440.
No Suggested Reading articles found!