Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2021, Vol. 41 Issue (6): 828-836    DOI: 10.11902/1005.4537.2020.153
Current Issue | Archive | Adv Search |
Effect of Surface State on Corrosion Resistance of TC4 Ti-alloy
LIU Xing1,2, RAN Dou1,2, MENG Huimin1(), LI Quande1,2,3, GONG Xiufang2,3, LONG Bin2,3
1.Institute of Advance Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
2.State Key Laboratory of Long-life High Temperature Materials, Deyang 618000, China
3.Dongfang Turbine Co. Ltd. , Deyang 618000, China
Download:  HTML  PDF(6642KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In order to promote the application of TC4 Ti-alloy for steam turbine blades, the influence of the surface state after shot peening on the corrosion resistance of TC4 Ti-alloy was assessed. The surface morphology and roughness of the TC4 sample after shot peening were characterized by means of transmission electron microscope, energy dispersive spectrometer, laser scanning confocal microscope and X-ray diffractometer. The corrosion resistance of the bare and shot peened TC4 Ti-alloy in 3.5%NaCl solution was comparatively examined by means of potential polarization curve measurement, electrochemical impedance spectroscopy and Mott-Schottky curve measurement. The results show that the surface roughness has a greater influence on the corrosion resistance rather than the small amount of shot peening residues. The polished TC4 Ti-alloy has the lowest corrosion current density, the largest capacitive resistance arc, the least defect of passivation film and the strongest corrosion resistance. After shot peening, the passivation film formed on the surface of the TC4 Ti-alloy peened by cast steel shots is the most stable, and the corrosion resistance is relatively high. Therefore, the smooth surface helps to form a uniform passivation film and increases the corrosion resistance of the TC4 Ti-alloy in 3.5%NaCl solution.

Key words:  TC4 Ti-alloy      shot peening      surface state      roughness      corrosion resistance     
Received:  18 August 2020     
ZTFLH:  TG178  
Fund: Sichuan Applied Foundation Projiect(2019YJ0699)
Corresponding Authors:  MENG Huimin     E-mail:  menghm16@126.com
About author:  MENG Huimin, E-mail: menghm16@126.com

Cite this article: 

LIU Xing, RAN Dou, MENG Huimin, LI Quande, GONG Xiufang, LONG Bin. Effect of Surface State on Corrosion Resistance of TC4 Ti-alloy. Journal of Chinese Society for Corrosion and protection, 2021, 41(6): 828-836.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2020.153     OR     https://www.jcscp.org/EN/Y2021/V41/I6/828

Fig.1  Surface morphology of TC4 Ti-alloy before shot peening
Fig.2  SEM surface images of TC4 Ti-alloy with CSSP (a, b), GSP (c, d) and CSP (e, f) treated
Fig.3  Three-dimensional surface topographies of TC4 Ti-alloy with untreated (a) and CSSP (b), GSP (c) and CSP (d) treated
SampleSurface roughness / μmSpecific surface area
RaRqRz
TC4 Ti-alloy0.0590.0790.6121.000
CSSP0.5500.6843.7121.076
GSP0.6020.7373.6991.105
CSP0.6760.8434.4501.119
Table 1  Surface roughnesses and specific surface areas of TC4 Ti-alloy with untreated and CSSP, GSP and CSP treated
Fig.4  Surface EDS analysis results of the surfaces of TC4 Ti-alloy with untreated (a), CSSP (b), GSP (c) and CSP (d) treated
Fig.5  XRD patterns of TC4 Ti-alloy before and after treatment by CSSP, GSP and CSP
Fig.6  Dynamic potential polarization curves of TC4 Ti-alloy without and with CSSP, GSP and CSP treatment in 3.5%NaCl solution
SampleEcorr / V vs.SCEIcorr / A·cm-2Ipass / A·cm-2
TC4 Ti-alloy-0.262.89×10-82.59×10-6
CSSP0.025.04×10-83.57×10-6
GSP-0.135.37×10-83.93×10-6
CSP-0.085.56×10-84.19×10-6
Table 2  Fitting parameters of dynamic potential polarization curves of TC4 Ti-alloy without and with CSSP, GSP and CSP treatment in 3.5%NaCl solution
Fig.7  Nyquist (a) and Bode (b) plots of TC4 Ti-alloy without and with CSSP, GSP and CSP treatment in 3.5%NaCl solution
Fig.8  Equivalent circuit model of TC4 Ti-alloy without and with CSSP, GSP and CSP treatment in 3.5% NaCl solution
SampleRs / Ω·cm2Q1 / Ω-1·cm-2·snn1R1 / Ω·cm2Q2 / Ω-1·cm-2·snn2R2 / Ω·cm2χ2
TC4 Ti-alloy28.935.99×10-60.88532.381.59×10-50.99878.88×1063.06×10-5
CSSP25.801.99×10-50.87572212.88×10-60.94953.71×1066.58×10-5
GSP24.861.93×10-50.869920.49.39×10-60.91512.56×1061.23×10-5
CSP27.432.96×10-50.8656135.24.55×10-60.90162.07×1064.99×10-5
Table 3  Fitting results of EIS of TC4 Ti-alloy without and with CSSP, GSP and CSP treatment in 3.5%NaCl solution
Fig.9  Mott-schottky curves of TC4 Ti-alloy without (a) and with CSSP (b), GSP (c) and CSP (d) in 3.5%NaCl solution
Fig.10  Nd (a) and Efb (b) of passive films formed on TC4 Ti-alloy without and with CSSP, GSP and CSP treatment in 3.5%NaCl solution
1 Prakash C, Singh S, Pruncu C I, et al. Surface modification of Ti-6Al-4V alloy by electrical discharge coating process using partially sintered Ti-Nb electrode [J]. Materials (Basel), 2019, 12: 1006
2 Krawiec H, Vignal V, Schwarzenboeck E, et al. Role of plastic deformation and microstructure in the micro-electrochemical behaviour of Ti-6Al-4V in sodium chloride solution [J]. Electrochim. Acta, 2013, 104: 400
3 Kuang Y Q. Research on the application prospect of titanium alloy on steam turbine blades [J]. Jiangsu Sci. Technol. Inform., 2013, (1): 67
匡逸强. 钛合金在汽轮机叶片上的应用前景研究 [J]. 江苏科技信息, 2013, (1): 67
4 Chen G Q, Tian T Y, Zhang X H, et al. Microstructure and fatigue properties of Ti-6Al-4V titanium alloy treated by wet shot peening of ceramic beads [J]. Chin. J. Nonferrous Met., 2013, 23: 122
陈国清, 田唐永, 张新华等. Ti-6Al-4V钛合金陶瓷湿喷丸表面强化微观组织与疲劳性能 [J]. 中国有色金属学报, 2013, 23: 122
5 Yang C, Liu Y G, Li M Q. Characteristics and formation mechanisms of defects in surface layer of TC17 subjected to high energy shot peening [J]. Appl. Surf. Sci., 2020, 509: 144711
6 Oh-Ishi K, Edalati K, Kim H S, et al. High-pressure torsion for enhanced atomic diffusion and promoting solid-state reactions in the aluminum-copper system [J]. Acta Mater., 2013, 61: 3482
7 Oudriss A, Creus J, Bouhattate J, et al. Grain size and grain-boundary effects on diffusion and trapping of hydrogen in pure nickel [J]. Acta Mater., 2012, 60: 6814
8 Zhao R, Wu Z, Liu L, et al. Research progress in effect of shot peening on corrosion resistance of metallic materials [J]. Heat Treat. Met., 2018, 43(12): 88
赵蓉, 吴忠, 刘磊等. 喷丸对金属材料耐蚀性能影响的研究进展 [J]. 金属热处理, 2018, 43(12): 88
9 Li K, Fu X S, Li Z Q, et al. Fatigue fracture mechanism of Ti-6Al-4V alloy strengthened by wet peening treatment [J]. Rare Met. Mater. Eng., 2017, 46: 3068
李康, 付雪松, 李志强等. 湿喷丸强化对TC4合金疲劳断裂机制的影响 [J]. 稀有金属材料与工程, 2017, 46: 3068
10 Zhang C H, Xie G, Song W, et al. Fatigue performance of surface nanocrystallized TC4 [J]. Rare Met. Mater. Eng., 2015, 44: 866
张聪惠, 解钢, 宋薇等. 表面纳米化TC4疲劳性能研究 [J]. 稀有金属材料与工程, 2015, 44: 866
11 Huang Y, Zhou J Z, Li J, et al. Effects of cryogenic laser peening on damping characteristics and vibration fatigue life of TC6 titanium alloy [J]. Chin. J. Laser, 2020, 47: 0402011
黄宇, 周建忠, 李京等. 深冷激光喷丸对TC6钛合金阻尼特性及振动疲劳寿命的影响 [J]. 中国激光, 2020, 47: 0402011
12 Tan L, Yao C F, Zhang D H, et al. Evolution of surface integrity and fatigue properties after milling, polishing, and shot peening of TC17 alloy blades [J]. Int. J. Fatigue, 2020, 136: 105630
13 Soyama H, Takeo F. Effect of various peening methods on the fatigue properties of titanium Alloy Ti6Al4V manufactured by direct metal laser sintering and electron beam melting [J]. Materials, 2020, 13: 2216
14 Yang L. Analysis of surface roughness and impairment after surface nanocrystallization for HSP [D]. Dalian: Dalian Jiaotong University, 2006
杨磊. 高能喷丸表面纳米化后表面粗糙度和损伤的研究 [D]. 大连: 大连交通大学, 2006
15 Lee H S, Kim D S, Jung J S, et al. Influence of peening on the corrosion properties of AISI 304 stainless steel [J]. Corros. Sci., 2009, 51: 2826
16 Hao Y W, Deng B, Zhong C, et al. Effect of surface mechanical attrition treatment on corrosion behavior of 316 stainless steel [J]. J. Iron Steel Res. Int., 2009, 16: 68
17 Chi G F, Yi D Q, Liu H Q. Effect of roughness on electrochemical and pitting corrosion of Ti-6Al-4V alloy in 12 wt.%HCl solution at 35  ℃ [J]. J. Mater. Res. Technol., 2020, 9: 1162
18 Xu J, Bao X K, Jiang S Y. In vitro corrosion resistance of Ta2N nanocrystalline coating in simulated body fluids [J]. Acta Metall. Sin., 2018, 54: 443
徐江, 鲍习科, 蒋书运. 纳米晶Ta2N涂层在模拟人体环境中的耐蚀性能研究 [J]. 金属学报, 2018, 54: 443
19 Li X, Dong Y C, Dan Z H, et al. Corrosion behavior of ultrafine grained pure ti processed by equal channel angular pressing [J]. Acta Metall. Sin., 2019, 55: 967
李鑫, 董月成, 淡振华等. 等通道角挤压制备超细晶纯Ti的腐蚀性能研究 [J]. 金属学报, 2019, 55: 967
20 Xie F X, He X B, Cao S L, et al. Influence of pore characteristics on microstructure, mechanical properties and corrosion resistance of selective laser sintered porous Ti–Mo alloys for biomedical applications [J]. Electrochim. Acta, 2013, 105: 121
21 Shukla A K, Balasubramaniam R, Bhargava S. Properties of passive film formed on CP titanium, Ti-6Al-4V and Ti-13.4Al-29Nb alloys in simulated human body conditions [J]. Intermetallics, 2005, 13: 631
22 Yang Y J, Zhang X Y, Liu M H. Galvanic corrosion of TB5 titanium alloy of anodic oxidation film [J]. J. Aeronaut. Mater., 2015, 35(5): 57
杨勇进, 张晓云, 刘明辉. TB5钛合金脉冲阳极氧化膜电偶腐蚀性能研究 [J]. 航空材料学报, 2015, 35(5): 57
23 Yang F, Wu J P, Guo D Z, et al. Electrochemical corrosion of Ti-Ta alloy in nitric acid [J]. Titanium Ind. Prog., 2018, 35(2): 22
杨帆, 吴金平, 郭荻子等. Ti-Ta合金在硝酸中电化学腐蚀研究 [J]. 钛工业进展, 2018, 35(2): 22
24 Shi K Y, Zhang J Z, Zhang Y, et al. Preparation and corrosion resistance of Nb2N coating on TC4 Ti-alloy [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 313
史昆玉, 张进中, 张毅等. Nb2N涂层制备及其耐腐蚀性能研究 [J]. 中国腐蚀与防护学报, 2019, 39: 313
25 Wang L, Yi D Q, Liu H Q, et al. Effect of Ru on corrosion behavior of Ti-6Al-4V alloy and its mechanism [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 25
王乐, 易丹青, 刘会群等. Ru对Ti-6Al-4V合金腐蚀行为的影响及机理研究 [J]. 中国腐蚀与防护学报, 2020, 40: 25
26 Jiang Z L, Xin D, Middleton H. Investigation on passivity of titanium under steady-state conditions in acidic solutions [J]. Mater. Chem. Phys., 2011, 126: 859
27 Jovic V D, Barsoum M W. Corrosion behavior and passive film characteristics formed on Ti, Ti3SiC2, and Ti4AlN3 in H2SO4 and HCl [J]. J. Electrochem. Soc., 2004, 151: B71
28 Yan S K, Zheng D J, Wei J, et al. Electrochemical activation of passivated pure Titanium in artificial seawater [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 123
严少坤, 郑大江, 韦江等. 钝性纯Ti在人工海水中的电化学活化行为研究 [J]. 中国腐蚀与防护学报, 2019, 39: 123
29 Silva R A, Walls M, Rondot B, et al. Electrochemical and microstructural studies of tantalum and its oxide films for biomedical applications in endovascular surgery [J]. J. Mater. Sci.: Mater. Med., 2002, 13: 495
30 Schneider M, Schroth S, Schilm J, et al. Micro-EIS of anodic thin oxide films on titanium for capacitor applications [J]. Electrochim. Acta, 2009, 54: 2663
31 Fattah-Alhosseini A, Imantalab O, Ansari G. The role of grain refinement and film formation potential on the electrochemical behavior of commercial pure titanium in Hank's physiological solution [J]. Mater. Sci. Eng., 2017, 71C: 827
32 Zheng Z J, Gao Y, Gui Y, et al. Corrosion behaviour of nanocrystalline 304 stainless steel prepared by equal channel angular pressing [J]. Corros. Sci., 2012, 54: 60
33 Zhang C H, Song W, Wang Y M, et al. Effect of surface strengthening on corrosion property of Ti-6Al-4V in 3.5%NaCl [J]. Appl. Mech. Mater., 2016, 853: 473
[1] FANG Haojie, QU Hua, YANG Lihui, ZENG Qingya, WANG Lidan, YUAN Ning, HOU Baorong, CAO Lixin, YUAN Xundao. Corrosion Behavior of 9C Series of Powder Metallurgy Al-alloy with High Corrosion Resistance[J]. 中国腐蚀与防护学报, 2021, 41(6): 775-785.
[2] ZHENG Shien, PAN Yingjun, ZHANG Heng, KE Deqing, YANG Ling, ZHU Xingyu. Corrosion Resistance of Boride Cladding Layer on Surface of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(6): 843-848.
[3] ZHOU Dianmai, JIANG Lei, WANG Meiting, LIANG Hongjia, XIAO Yunlong, ZHENG Li, YU Baoyi. Effects of Ce(NO3)2 Concentration and Silicate Sealing Treatment on Calcium Phosphating Film on Surface of Mg-Zn-Y-Ca Alloy for High Speed Railway Corbel[J]. 中国腐蚀与防护学报, 2021, 41(6): 849-856.
[4] YANG Sheng, ZHANG Huijie, XIANG Wuyuan, OUYANG Tao, XIAO Fen, ZHOU Hui. Effect of Post Surface Treatment of Micro-arc Oxidation Films/TC4 Ti-alloy on Their Morphology and Galvanic Corrosion Performance[J]. 中国腐蚀与防护学报, 2021, 41(6): 905-908.
[5] DING Yukang, CHEN Guomei, NI Zifeng, LIU Yaxuan, QIAN Shanhua, BIAN Da, ZHAO Yongwu. Corrosion Resistance of Silane Film Modified by Hexagonal Boron Nitride[J]. 中国腐蚀与防护学报, 2021, 41(6): 864-870.
[6] WU Lintao, ZHOU Zehua, ZHANG Xin, YANG Guangheng, ZHANG Kaicheng, WANG Guangyu. Long-term Corrosion Resistance of Plasma Sprayed FeCrMoCBY Fe-based Amorphous Coating in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(5): 717-720.
[7] LIU Hongyu, ZHANG Xiqing, TENG Yingxue, LI Shengli. Corrosion Resistance and Antifouling Performance of Copper-bearing Low-carbon Steel in Marine Environment[J]. 中国腐蚀与防护学报, 2021, 41(5): 679-685.
[8] YANG Guangheng, ZHOU Zehua, ZHANG Xin, WU Lintao, MEI Wan. Influence of Magnetic Field on Corrosion Behavior of Al-Mg Alloys with Different Mg Content[J]. 中国腐蚀与防护学报, 2021, 41(5): 633-638.
[9] LANG Fengjun, HUANG Feng, XU Jinqiao, LI Liwei, YUE Jiangbo, LIU Jing. Composition Design and Corrosion Resistance of Mg Microallyed X70 Grade Acid Resistant Submarine Pipeline Steel (X70MOS)[J]. 中国腐蚀与防护学报, 2021, 41(5): 617-624.
[10] FENG Yanpeng, ZHANG Xian, WU Kaiming, YANG Miao. Influence of Heat Treatment Process on Microstructure and Corrosion Resistance of Ultrafine Bainite Steel[J]. 中国腐蚀与防护学报, 2021, 41(5): 602-608.
[11] ZHANG Haoran, WU Hongyan, WANG Shanlin, ZUO Yao, CHEN Yuhua, YIN Limeng. Pitting Behavior of Fe-based Amorphous Alloy with Sulfide Inclusion[J]. 中国腐蚀与防护学报, 2021, 41(4): 477-486.
[12] SHI Jian, HU Xuewen, HE Bo, YANG Zheng, GUO Rui, WANG Fei. Sulfuric Acid Corrosion Resistance of Q345NS Steel Welded Joint[J]. 中国腐蚀与防护学报, 2021, 41(4): 565-570.
[13] WANG Xiaoge, GAO Kewei, YAN Luchun, YANG Huisheng, PANG Xiaolu. Effect of Ce on Corrosion Resistance of Films of ZnAlCe-layered Double Hydroxides on Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(3): 335-340.
[14] ZHAN Yuting, WANG Jianhua, JIN Kai, CHEN Jianbin, WANG Hujun, FANG Jun, CHEN Weilin, SUI Lei. Effect of Shot Peening on Fatigue Life Performance of a Home-made Nut[J]. 中国腐蚀与防护学报, 2021, 41(3): 395-399.
[15] WANG Dongliang, DING Huaping, MA Yunfei, GONG Pan, WANG Xinyun. Research Progress on Corrosion Resistance of Metallic Glasses[J]. 中国腐蚀与防护学报, 2021, 41(3): 277-288.
No Suggested Reading articles found!