Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2021, Vol. 41 Issue (6): 871-876    DOI: 10.11902/1005.4537.2020.180
Current Issue | Archive | Adv Search |
Corrosion Behavior of Q235 Steels in Atmosphere at Deyang District for one Year
WANG Zhigao1, HAI Chao2, JIANG Jie3, LAN Xinsheng1, DU Cuiwei2(), LI Xiaogang2
1.State Grid Sichuan Electric Power Research Institute, Chengdu 610041, China
2.Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083, China
3.School of Mechanical and Electrical Engineering, Chengdu University of Technology, Chengdu 610059, China
Download:  HTML  PDF(7357KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The atmospheric corrosion behavior of carbon steel, the main material of power transmission and transformation equipment, was studied via fled exposure in atmospheres of three different transformer substations situated at Deyang district for one year, as well as weight loss measurement, macroscopic morphology observation, SEM analysis, corrosion product analysis and electrochemical test. The results show that the average corrosion rates of carbon steel are 13.8, 23.47, and 40.18 μm/a, corresponding to the three test sites respectively. The corrosion products of carbon steel exposed in the three test sites are mainly composed of α-FeOOH, γ-FeOOH and Fe3O4, among others, the proportion of α-FeOOH is higher in the rust layer on the steel exposed in one test site,where the atmosphere is severely corrosive. The electrochemical results show that the more serious the corrosion of carbon steel is, the higher the corrosion current density and the Rct are, which indicates that the rust layer formed on the surface of carbon steel can effectively protect the steel and slow down the further corrosion of the steel substrate.

Key words:  power transmission and transformation equipments      carbon steel      atmospheric corrosion     
Received:  29 September 2020     
ZTFLH:  TG174  
Fund: Fundamental Research Funds for Central Universities(FRF-MP-18-002);Science and Technology Project of State Grid Sichuan Electric Power Corporation of China(521997160013)
Corresponding Authors:  DU Cuiwei     E-mail:  dcw@ustb.edu.cn
About author:  DU Cuiwei, E-mail: dcw@ustb.edu.cn

Cite this article: 

WANG Zhigao, HAI Chao, JIANG Jie, LAN Xinsheng, DU Cuiwei, LI Xiaogang. Corrosion Behavior of Q235 Steels in Atmosphere at Deyang District for one Year. Journal of Chinese Society for Corrosion and protection, 2021, 41(6): 871-876.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2020.180     OR     https://www.jcscp.org/EN/Y2021/V41/I6/871

Fig.1  Macro morphologies of Q235 steels after exposure in substation A substation (a), B substation (b) and C substation (c) for 1 a
Fig.2  Micro morphologies and EDS results (a1~c1) and section morphologies (a2~c2) of the corrosion products of Q235 steel after exposure in A substation (a), B substation (b) and C substation (c) for 1 a
Fig.3  XRD patterns of the corrosion products of Q235 steel after exposure in different substations of for 1 a
Fig.4  Corrosion pit distributions of the corrosion products of Q235 steel after exposure in A substation (a), B substation (b) and C substation (c) for 1 a
Fig.5  Corrosion pit depth of Q235 steel after exposure in different substations for 1 a
Fig.6  Polarization curve of Q235 steel after exposure in different substations of Deyang city for 1 a
Fig.7  Nyquist (a), Bode (b) plots and equivalent circuit (c) of Q235 steel after exposure in different substations for 1 a
AreaEcorro / mVIcorr / μA·cm-2RrRct
A substation-499.99790.64280.189.34
B substation-473.94123.46282.192.95
C substation-380.62489.468157.1280.6
Table 1  Electrochemical fitting results of Q235 steel after exposure in different substations for 1 a
1 Wang Z G, Tian Q Q, Geng Z, et al. Corrosion investigation and protection measures of power transmission and transformation equipment in Sichuan power grid [J]. Corros. Prot., 2021, 42(3): 34
王志高, 田倩倩, 耿植等. 四川电网输变电设备的腐蚀情况调查及防护措施 [J]. 腐蚀与防护, 2021, 42(3): 34
2 Liang C F, Hou W T. Atmospheric corrosivity for steels [J]. J. Chin. Soc. Corros. Prot., 1998, 18: 1
梁彩凤, 侯文泰. 环境因素对钢的大气腐蚀的影响 [J]. 中国腐蚀与防护学报, 1998, 18: 1
3 Oesch S, Heimgartner P. Environmental effects on metallic materials-results of an outdoor exposure programme running in Switzerland [J]. Mater. Corros., 1996, 47: 425
4 Saeedi M, Daneshvar S, Karbassi A R. Role of riverine sediment and particulate matter in adsorption of heavy metals [J]. Int. J. Environ. Sci. Technol., 2004, 1: 135
5 Cheng X Q, Jin Z, Liu M, et al. Optimizing the nickel content in weathering steels to enhance their corrosion resistance in acidic atmospheres [J]. Corros. Sci., 2017, 115: 135
6 Cui Z Y, Xiao K, Dong C F, et al. Corrosion behavior of copper and brass in serious Xisha marine atmosphere [J]. Chin. J. Nonferrous Mat., 2013, 23: 742
崔中雨, 肖葵, 董超芳等. 西沙严酷海洋大气环境下紫铜和黄铜的腐蚀行为 [J]. 中国有色金属学报, 2013, 23: 742
7 Wu W, Cheng X Q, Hou H X, et al. Insight into the product film formed on Ni-advanced weathering steel in a tropical marine atmosphere [J]. Appl. Surf. Sci., 2018, 436: 80
8 Zhang D, Wang Z Y, Zhou Y Z, et al. Initial corrosion behavior of galvanized steel in atmosphere by Qinghai salt lake [J]. Chin. J. Mater. Res., 2018, 32: 255
张丹, 王振尧, 周永璋等. 镀锌钢在青海盐湖大气环境下的初期腐蚀行为研究 [J]. 材料研究学报, 2018, 32: 255
9 Zhang Y Y, Zou Y, Wang J. Research progress on corrosion of carbon steels under rust layer in marine environment [J]. Corros. Sci. Prot. Technol., 2011, 23: 93
郑莹莹, 邹妍, 王佳. 海洋环境中锈层下碳钢腐蚀行为的研究进展 [J]. 腐蚀科学与防护技术, 2011, 23: 93
10 Zhang X Y, Cai J P, Ma Y J, et al. Analysis on atmospheric corrosion of weathering and carbon steels [J]. Corros. Sci. Prot. Technol., 2004, 16: 389
张晓云, 蔡健平, 马颐军等. 耐候钢和碳钢大气腐蚀规律分析 [J]. 腐蚀科学与防护技术, 2004, 16: 389
11 Xiao K, Dong C F, Li X G, et al. Atmospheric corrosion behavior of weathering steels in initial stage [J]. J. Iron Steel Res., 2008, 20(10): 53
肖葵, 董超芳, 李晓刚等. 大气腐蚀下耐候钢的初期行为规律 [J]. 钢铁研究学报, 2008, 20(10): 53
12 Wang C, Cao G W, Pan C, et al. Atmospheric corrosion of carbon steel and weathering steel in three environments [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 39
汪川, 曹公旺, 潘辰等. 碳钢、耐候钢在3种典型大气环境中的腐蚀规律研究 [J]. 中国腐蚀与防护学报, 2016, 36: 39
13 Wang L, Guo C Y, Xiao K, et al. Corrosion behavior of carbon steels Q235 and Q450 in dry hot atmosphere at Turpan district for four years [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 431
王力, 郭春云, 肖葵等. Q235和Q450钢在吐鲁番干热大气环境中长周期暴晒时的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2018, 38: 431
14 Wang Y H, Li A J, Wang J. Influence of inert particles deposition on corrosion behavior of carbon steel [A]. 2016 National Symposium on Corrosion Electrochemistry and Testing Methods [C]. Qingdao, 2016
王燕华, 李爱娇, 王佳. 惰性颗粒物沉积对碳钢腐蚀行为的影响研究 [A]. 2016年全国腐蚀电化学及测试方法学术交流会 [C]. 青岛, 2016
15 Feliu S, Morcillo M, Feliu S. The prediction of atmospheric corrosion from meteorological and pollution parameters—I. Annual corrosion [J]. Corros. Sci., 1993, 34: 403
16 Hu X Q, Liang C H. The development and applications of AC impedance technology[J]. Corros. Prot., 2004, 25: 57
扈显琦, 梁成浩. 交流阻抗技术的发展与应用 [J]. 腐蚀与防护, 2004, 25: 57
17 Zhang W L, Liu J R. Research on corrosion behaviour on atmospheric corrosion resistant steel via A.C impedance [J]. Res. Iron Steel, 1996, (5): 39
张万灵, 刘建蓉. 交流阻抗法对耐候钢腐蚀行为的研究 [J]. 钢铁研究, 1996, (5): 39
[1] ZHANG Fei, WANG Haitao, HE Yongjun, ZHANG Tiansui, LIU Hongfang. Case Analysis of Microbial Corrosion in Product Oil Pipeline[J]. 中国腐蚀与防护学报, 2021, 41(6): 795-803.
[2] XIA Xiaojian, CAI Jianbin, LIN Deyuan, WAN Xinyuan, LI Yangsen, ZHANG Biaohua, CHEN Yunxiang, HAN Jiceng, ZOU Zhimin, JIANG Chunhai. Corrosion Status, Corrosion Mechanisms and Anti-corrosion Measures in Coastal Substations[J]. 中国腐蚀与防护学报, 2021, 41(5): 697-704.
[3] WANG Jun, CHEN Junjun, XIE Yi, XU Song, LIU Lanlan, WU Tangqing, YIN Fucheng. Evaluation of Environmental Factors Related with Atmosphere Corrosivity in Hunan Provice by Atmospheric Corrosion Monitoring Technique[J]. 中国腐蚀与防护学报, 2021, 41(4): 487-492.
[4] CHEN Wenjuan, FANG Lian, PAN Gang. Corrosion Evolution Characteristics of Q235B Steel in O3/SO2 Composite Atmosphere[J]. 中国腐蚀与防护学报, 2021, 41(4): 450-460.
[5] ZHANG Chen, LU Yuan, ZHAO Jingmao. Synergistic Inhibition Effect of Imidazoline Ammonium Salt and Three Cationic Surfactants in H2S/CO2 Brine Solution[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[6] FAN Yi,CHEN Linheng,CAI Jiaxing,DAi Qinqin,MA Hongchi,CHENG Xuequn. Corrosion Behavior of Hot-rolled AH36 Plate in Indoor Storage Environment[J]. 中国腐蚀与防护学报, 2020, 40(1): 10-16.
[7] PAN Chengcheng,MA Chao,XIA Dahai. Estimation for Relevance of Atmospheric Corrosion Initiation with Surface Texture of Several Metallic Materials by Electron Backscattering Diffraction[J]. 中国腐蚀与防护学报, 2019, 39(6): 495-503.
[8] ZHAO Jinbin,ZHAO Qiyue,CHEN Linheng,HUANG Yunhua,CHENG Xuequn,LI Xiaogang. Effect of Different Surface Treatments on Corrosion Behavior of 300M Steel in Qingdao Marine Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
[9] DENG Junhao,HU Jiezhen,DENG Peichang,WANG Gui,WU Jingquan,WANG Kun. Effect of Oxide Scales on Initial Corrosion Behavior of SPHC Hot Rolled Steel in Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(4): 331-337.
[10] Yongwei SUN,Yuping ZHONG,Lingshui WANG,Fangxiong FAN,Yatao CHEN. Corrosion Behavior of Low-alloy High Strength Steels in a Simulated Common SO2-containing Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[11] Ping XU,Shuo ZHANG,Shuai SI,Yajun ZHANG,Changzheng WANG. Corrosion Mechanism of Carbon Steel Induced by Protein and Polysaccharide-the Main Components of EPS[J]. 中国腐蚀与防护学报, 2019, 39(2): 176-184.
[12] Xiankang ZHONG,Junying HU. Corrosion Behavior of X65 Carbon Steel in CO2Containing Liquids with Constant pH and Ferrous Ion Concentration[J]. 中国腐蚀与防护学报, 2018, 38(6): 573-578.
[13] Li WANG, Chunyun GUO, Kui XIAO, Tuerxun·Silayiding, Chaofang DONG, Xiaogang LI. Corrosion Behavior of Carbon Steels Q235 and Q450 in Dry Hot Atmosphere at Turpan District for Four Years[J]. 中国腐蚀与防护学报, 2018, 38(5): 431-437.
[14] Yue QIAO, Zhiping ZHU, Lei YANG, Zhifeng LIU. Monitoring and Simulated Experiments of Oxidation-Reduction Potential of Boiler Feedwater at High Temperatures[J]. 中国腐蚀与防护学报, 2018, 38(5): 487-494.
[15] Wanjun PENG, Jiheng DING, Hao CHEN, Haibin YU. Corrosion Inhibition of Bio-based Inhibitor Furfuryl Glycidyl Ether[J]. 中国腐蚀与防护学报, 2018, 38(3): 303-308.
No Suggested Reading articles found!