Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2019, Vol. 39 Issue (2): 130-137    DOI: 10.11902/1005.4537.2017.212
Current Issue | Archive | Adv Search |
Investigation on Hydrogen-induced Cracking Behavior of 2205 Duplex Stainless Steel Used for Marine Structure
Haisheng TONG1,Yanhui SUN2,Yanjing SU3,Xiaolu PANG1,Kewei GAO1,3()
1. School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
2. Collaborative Innovation Center of Steel Technology University of Science and Technology Beijing, Beijing 100083, China
3. Key Laboratory for Environmental Fracture Ministry of Education, University of Technology Beijing, Beijing 100083, China
Download:  HTML  PDF(17888KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The hydrogen-induced cracking behavior of a new-designed duplex stainless steel 2205 (including its two-subtypes A-DSS and B-DSS) used for marine structures in artificial seawater was investigated by means of slow strain rate test (SSRT), mechanical test and scanning electron microscope. While the hydrogen permeation behavior of A-DSS and B-DSS was studied by Devanathan-Stachurski's hydrogen permeation technique. The results showed that the hydrogen diffusion coefficients for A-DSS and B-DSS were 2.36×10-10 and 2.31×10-10 cm2/s, respectively. A-DSS and B-DSS exhibited the lowest susceptibilities to environment induced fracture when the applied cathodic potentials were -800 and -700 mV (SCE), respectively. Correspondingly, SEM observations of the fracture surface of the above two steels showed that cracks initiated in ferrite phase, and were arrested by austenite phase or interface boundaries of ferrite/austenite.

Key words:  2205 duplex stainless steel      cathodic polarized      hydrogen embrittlement      crack initiation     
Received:  18 December 2017     
ZTFLH:  TG174.1  
Fund: National High Technology Research and Development Program of China(2015AA03A502);National Natural Science Foundation of China(51771026)
Corresponding Authors:  Kewei GAO     E-mail:  kwgao@mater.ustb.edu.cn

Cite this article: 

Haisheng TONG,Yanhui SUN,Yanjing SU,Xiaolu PANG,Kewei GAO. Investigation on Hydrogen-induced Cracking Behavior of 2205 Duplex Stainless Steel Used for Marine Structure. Journal of Chinese Society for Corrosion and protection, 2019, 39(2): 130-137.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2017.212     OR     https://www.jcscp.org/EN/Y2019/V39/I2/130

SteelCSiMnPSCrNiMoNBFe
A-DSS0.0220.451.210.0210.001121.855.152.940.150.0026Bal.
B-DSS0.0260.420.960.0260.001322.434.923.150.180.0016Bal.
Table 1  Chemical compositions of two duplex stainless steels
Fig.1  OM images of A-DSS (a) and B-DSS (b) steels
Fig.2  Stress-stain curves of A-DSS (a) and B-DSS (b) steels under different conditions
ConditionA-DSSConditionB-DSS
Air28.13Air54.11
OCP24.56OCP51.57
-800 mV26.92-700 mV52.07
-850 mV25.03-750 mV49.70
-900 mV25.81-800 mV48.86
-1000 mV21.94-1000 mV34.20
-1200 mV20.10-1200 mV28.30
Table 2  Elongation values of A-DSS and B-DSS steels under different conditions
Fig.3  Tensile strengths of A-DSS (a) and B-DSS (b) steels under different tensile conditions
Fig.4  Variations of plasticities of A-DSS (a) and B-DSS (b) steels under different tensile conditions
Fig.5  Variations of environmental fracture susceptibilities of A-DSS (a) and B-DSS (b) steels with applied potential
Fig.6  Surface morphologies of A-DSS steel under different applied potentials: (a) open circuit potential, (b) -800 mV, (c) -850 mV, (d) -900 mV, (e) -1000 mV, (f) -1200 mV
Fig.7  Surface morphologies of B-DSS steel under different applied potentials: (a) open circuit potential, (b) -700 mV, (c) -750 mV, (d) -800 mV, (e) -1000 mV, (f) -1200 mV
Fig.8  Fracture surfaces of A-DSS steel under different conditions: (a) in air, (b) open circuit potential, (c) -800 mV, (d)-850 mV, (e) -900 mV, (f) -1000 mV, (g) -1200 mV
Fig.9  Fracture surfaces of B-DSS steel under different conditions: (a) in air, (b) open circuit potential, (c) -700mV, (d) -750 mV, (e) -800 mV, (f) -1000 mV, (g) -1200 mV
Fig.10  Morphologies of cracks near fracture surfaces of A-DSS (a) and B-DSS (b) steels
[1] Song W J. Application Technology of 2205 Duplex Phase Stainless Steel in Kela-2 Project [M]. Beijing: Petroleum Industry Press, 2007
[1] 宋文杰. 2205双相不锈钢在克拉2工程中的应用技术 [M]. 北京: 石油工业出版社, 2007
[2] Herms E, Olive J M, Puiggali M. Hydrogen embrittlement of 316L type stainless steel [J]. Mater. Sci. Eng., 1999, A272: 279
[3] Wolfe L H, Burnette C C, Joosten M W. Hydrogen embrittlement of cathodically protected subsea bolting alloys [J]. Mater. Perform., 1993, 32: 14
[4] Francis R, Byrne G, Warburton G R. Effects of cathodic protection on duplex stainless steels in seawater [J]. Corrosion, 1997, 53: 234
[5] Kim S J, Okido M, Moon K M. An electrochemical study of cathodic protection of steel used for marine structures [J]. Korean J. Chem. Eng., 2003, 20: 560
[6] El-Yazgi A A, Hardie D. The embrittlement of a duplex stainless steel by hydrogen in a variety of environments [J]. Corros. Sci., 1996, 38: 735
[7] Zucchi F, Grassi V, Monticelli C, et al. Hydrogen embrittlement of duplex stainless steel under cathodic protection in acidic artificial sea water in the presence of sulphide ions [J]. Corros. Sci., 2006, 48: 522
[8] Wang X R, Zhang L, Chang W, et al. The investigation on hydrogen induced stress cracking of duplex stainless steel under cathodic protection [A]. 8th National Environmental Sensitive Fracture Symposium [C]. Daqing, 2011: 132
[8] 王鑫茹, 张雷, 常炜等. 双相不锈钢在阴极保护下的氢致应力开裂研究 [A]. 第八届全国环境敏感断裂学术研讨会 [C]. 大庆, 2011: 132)
[9] Meinhardt C P, Scheid A, dos Santos J F, et al. Hydrogen embrittlement under cathodic protection of friction stir welded UNS S32760 super duplex stainless steel [J]. Mater. Sci. Eng., 2017, A706: 48
[10] Flowers J W, Beck F H, Fontana M G. Corrosion and age hardening studies of some cast stainless alloys containing ferrite [J]. Corrosion, 1963, 19: 186t
[11] Sherman D H, Duquette D J, Savage W F. Stress corrosion cracking behavior of duplex stainless steel weldments in boiling MgCl2 [J]. Corrosion, 1975, 31: 376
[12] Ha H Y, Seo W G, Park J Y, et al. Influences of Mo on stress corrosion cracking susceptibility of newly developed FeCrMnNiNC-based lean austenitic stainless steels [J]. Mater. Charact., 2016, 119: 200
[13] Silverstein R, Glam B, Eliezer D, et al. Dynamic deformation of hydrogen charged austenitic-ferritic steels: Hydrogen trapping mechanisms, and simulations [J]. J. Alloy. Compd., 2018, 731: 1238
[14] Hsu J W, Tsai S Y, Shih H C. Hydrogen embrittlement of SAF 2205 duplex stainless steel [J]. Corrosion, 2002, 58: 858
[15] Guo L Q, Li M, Shi X L, et al. Effect of annealing temperature on the corrosion behavior of duplex stainless steel studied by in situ techniques [J]. Corros. Sci., 2011, 53: 3733
[16] Li M, Guo L Q, Qiao L J, et al. The mechanism of hydrogen-induced pitting corrosion in duplex stainless steel studied by SKPFM [J]. Corros. Sci., 2012, 60: 76
[1] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[2] ZHAO Dongyang, ZHOU Yu, WANG Dongying, NA Duo. Effect of Phosphating on Hydrogen Embrittlement of SA-540 B23 Steel for Nuclear Reactor Coolant Pump Bolt[J]. 中国腐蚀与防护学报, 2020, 40(6): 539-544.
[3] ZHANG Qichao, HUANG Yanliang, XU Yong, YANG Dan, LU Dongzhu. Research Progress on Hydrogen Absorption and Embrittlement of Titanium and Its Alloy for High-level Nuclear Waste Container in Deep Geological Disposal Environment[J]. 中国腐蚀与防护学报, 2020, 40(6): 485-494.
[4] ZHOU Yu, ZHANG Haibing, DU Min, MA Li. Effect of Cathodic Potentials on Hydrogen Embrittlement of 1000 MPa Grade High Strength Steel in Simulated Deep-sea Environment[J]. 中国腐蚀与防护学报, 2020, 40(5): 409-415.
[5] ZHAO Jinbin,ZHAO Qiyue,CHEN Linheng,HUANG Yunhua,CHENG Xuequn,LI Xiaogang. Effect of Different Surface Treatments on Corrosion Behavior of 300M Steel in Qingdao Marine Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
[6] REN Jianping,SONG Renguo. Effect of Two-stage Ageing on Mechanical Properties and Sensitivity to Hydrogen Embrittlement of 7050 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2019, 39(4): 359-366.
[7] Teng LI, Weiliang JIN, Chen XU, Jianghong MAO. Determination of Steady Critical Current Density of Hydrogen Evolution During Electrochemical Repair Process of Reinforced Concrete[J]. 中国腐蚀与防护学报, 2017, 37(4): 382-388.
[8] Tianyi ZHANG,Junsheng WU,Hailong GUO,Xiaogang LI. Influence of HSO3- on Passive Film Composition and Corrosion Resistance of 2205 Duplex Stainless Steelin Simulated Seawater[J]. 中国腐蚀与防护学报, 2016, 36(6): 535-542.
[9] Tingyong WANG,Lanying MA,Xiangchen WANG,Haibing ZHANG,Kai CHEN,Yonggui YAN. Investigation of Cathodic Protection Parameters of Candi-date Materials of Condenser for a Nuclear Power Station and Its Application in Seawater[J]. 中国腐蚀与防护学报, 2016, 36(6): 624-630.
[10] ZHANG Timing, ZHAO Weimin, GUO Wang, WANG Yong. Susceptibility to Hydrogen Embrittlement of X65 Steel Under Cathodic Protection in Artificial Sea Water[J]. 中国腐蚀与防护学报, 2014, 34(4): 315-320.
[11] HAO Wenkui,LIU Zhiyong,ZHANG Xin,DU Cuiwei,LI Xiaogang,LIU Xiang. Effect of H2S Concentration on Stress Corrosion Cracking Behavior of 35CrMo Steel in An Artificial Solution Simulated Drilling Well Waters at Oil Field[J]. 中国腐蚀与防护学报, 2013, 33(5): 357-362.
[12] LIU Zuojia,CHENG Xuequn,LI Xiaogang,LIU Xiaohui. Application of PDM (Point Defect Model) on 2205 Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2013, 33(2): 90-96.
[13] LI Chengjie,DU Min. Research and Development of Cathodic Protection for Steels in Deep Seawater[J]. 中国腐蚀与防护学报, 2013, 33(1): 10-16.
[14] TANG Zhanmei, HU Shilin, ZHANG Pingzhu. STRESS CORROSION CRACKING OF 316Ti IN 300℃ HIGH TEMPERATURE WATER CONTAINING CHLORIDE IONS[J]. 中国腐蚀与防护学报, 2012, 32(4): 291-295.
[15] DONG Xiqing, HUANG Yanliang. RESEARCH PROGRESS FOR STRESS CORROSION CRACKING OF STAINLESS STEEL UNDER MARINE ENVIRONMENT[J]. 中国腐蚀与防护学报, 2012, 32(3): 189-194.
No Suggested Reading articles found!