Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2019, Vol. 39 Issue (2): 89-95    DOI: 10.11902/1005.4537.2018.186
Current Issue | Archive | Adv Search |
Research Progress on Stress Corrosion Cracking Behavior of Magnesium Alloys
Baojie WANG1,Jiyu LUAN1,Shidong WANG2,3,Daokui XU2,3()
1. School of Environmental and Chemical Engineering, Shenyang Ligong University, Shenyang 110159, China
2. Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3. Environmental Corrosion Center, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Download:  HTML  PDF(3293KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In this paper, the stress corrosion cracking (SCC) behavior of Mg-alloys and the relevant failure mechanism were systematically summarized. Moreover, the effect of anodic dissolution, mechanical loading and hydrogen embrittlement on the SCC cracking modes was described. The measures for improving the SCC resistance of Mg-alloys were also introduced. Finally, the existing problems in the current study, the research emphasis and direction in the future are also pointed out.

Key words:  magnesium alloy      stress corrosion cracking      localized corrosion      hydrogen-induced cracking      corrosion mechanism     
Received:  24 December 2018     
ZTFLH:  TG172.5  
Fund: National Natural Science Foundation of China(51701129);National Natural Science Foundation of China(51871211);the Postdoctoral Start Fund of Shenyang Ligong University(10500010006)
Corresponding Authors:  Daokui XU     E-mail:  dkxu@imr.ac.cn

Cite this article: 

Baojie WANG,Jiyu LUAN,Shidong WANG,Daokui XU. Research Progress on Stress Corrosion Cracking Behavior of Magnesium Alloys. Journal of Chinese Society for Corrosion and protection, 2019, 39(2): 89-95.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2018.186     OR     https://www.jcscp.org/EN/Y2019/V39/I2/89

Fig.1  Continuous propagation of crack due to dissolution following film rupture (a), and cleavage-type fracture ahead of embrittled zone (b) (σ is tensile stress)[3]
Fig.2  Fracture surfaces of ZE41 alloy in 0.5%NaCl solution (a) and distilled water (b), showing the predominant intergranular and isolated transgranular (labelled by arrows) cracking, and corrosion along the grain boundaries, respectively[11]
Fig.3  Stress-strain curves of as-forged (a) and T4 treated (b) Mg-Zn-Y-Zr alloy[66]
[1] Zhu W Y, Qiao L J, Li J X, et al. Hydrogen Embrittlement and Stress Corrosion [M]. Beijing: Science Press, 2013
[1] 褚武扬, 乔利杰, 李金许等. 氢脆和应力腐蚀 [M]. 北京: 科学出版社, 2013
[2] Choudhary L, Singh Raman R K. Mechanical integrity of magnesium alloys for biomedical applications [A].
[2] In: Tsn S N, Park II S, Lee M H. Surface Modification of Magnesium and its Alloys for Biomedical Applications.Volume 1: Biological Interactions, Mechanical Properties and Testing [M]. Cambrige: Woodhead Publishing, 2015: 179
[3] Winzer N, Atrens A, Song G L, et al. A critical review of the stress corrosion cracking (SCC) of magnesium alloys [J]. Adv. Eng. Mater., 2005, 7: 659
[4] Sieradzki K, Newman R C. Brittle behavior of ductile metals during stress-corrosion cracking [J]. Philos. Mag., 1985, 51A: 95
[5] Parkins R N. Predictive approaches to stress corrosion cracking failure [J]. Corros. Sci., 1980, 20: 147
[6] Winzer N, Atrens A, Dietzel W, et al. Characterisation of stress corrosion cracking (SCC) of Mg-Al alloys [J]. Mater. Sci. Eng., 2008, A488: 339
[7] Winzer N, Atrens A, Dietzel W, et al. Comparison of the linearly increasing stress test and the constant extension rate test in the evaluation of transgranular stress corrosion cracking of magnesium [J]. Mater. Sci. Eng., 2008, A472: 97
[8] Winzer N, Atrens A, Dietzel W, et al. Fractography of stress corrosion cracking of Mg-Al alloys [J]. Metall. Mater. Trans., 2008, 39A: 1157
[9] Ben-Hamu G, Eliezer D, Dietzel W, et al. Stress corrosion cracking of new Mg-Zn-Mn wrought alloys containing Si [J]. Corros. Sci., 2008, 50: 1505
[10] Chen J, Ai M R, Wang J Q, et al. Stress corrosion cracking behaviors of AZ91 magnesium alloy in deicer solutions using constant load [J]. Mater. Sci. Eng., 2009, A515: 79
[11] Kannan M B, Dietzel W, Blawert C, et al. Stress corrosion cracking of rare-earth containing magnesium alloys ZE41, QE22 and Elektron 21 (EV31A) compared with AZ80 [J]. Mater. Sci. Eng., 2008, A480: 529
[12] Ebtehaj K, Hardie D, Parkins R N. The influence of chloride-chromate solution composition on the stress-corrosion cracking of a Mg-Al alloy [J]. Corros. Sci., 1988, 28: 811
[13] Stampella R S, Procter R P M, Ashworth V. Environmentally-induced cracking of magnesium [J]. Corros. Sci., 1984, 24: 325
[14] Wearmouth W R, Dean G P, Parkins R N. Role of stress in the stress corrosion cracking of a Mg-Al alloy [J]. Corrosion, 1973, 29: 251
[15] Chakrapani D G, Pugh E N. Transgranular SCC of a Mg-Al alloy: Crystallographic, fractographic and acoustic-emission studies [J]. Metall. Trans., 1975, 6A: 1155
[16] Chakrapani D G, Pugh E N. Hydrogen embrittlement in a Mg-Al alloy [J]. Metall. Trans., 1976, 7A: 173
[17] Meletis E I, Hochman R F. Crystallography of stress corrosion cracking in pure magnesium [J]. Corrosion, 1984, 40: 39
[18] Kannan M B, Dietzel W. Pitting-induced hydrogen embrittlement of magnesium-aluminium alloy [J]. Mater. Des., 2012, 42: 321
[19] Curioni M. The behaviour of magnesium during free corrosion and potentiodynamic polarization investigated by real-time hydrogen measurement and optical imaging [J]. Electrochim. Acta, 2014, 120: 284
[20] Singh Raman R K, Jafari S, Harandi S E. Corrosion fatigue fracture of magnesium alloys in bioimplant applications: A review [J]. Eng. Fract. Mech., 2015, 137: 97
[21] Jafari S, Harandi S E, Singh Raman R K. A review of stress-corrosion cracking and corrosion fatigue of magnesium alloys for biodegradable implant applications [J]. JOM, 2015, 67: 1143
[22] Lynch S. Hydrogen embrittlement phenomena and mechanisms [J]. Corros. Rev., 2012, 30: 105
[23] Knott J F. Fracture toughness and hydrogen-assisted crack growth in engineering alloys [A].
[23] In: Thompson A W, Moody N R. Hydrogen Effects in Materials [M]. New York: Wiley, 1994: 385
[24] Kannan M B, Dietzel W, Zeng R, et al. A study on the SCC susceptibility of friction stir welded AZ31 Mg sheet [J]. Mater. Sci. Eng., 2007, A460/461: 243
[25] Kuramoto S, Araki I, Kanno M. Hydrogen behavior during stress-corrosion cracking of an AZ31 magnesium alloy [J]. J. Jpn. Inst. Light Met., 2001, 51: 397
[26] Lynch S P, Trevena P. Stress corrosion cracking and liquid metal embrittlement in pure magnesium [J]. Corrosion, 1988, 44: 113
[27] Winzer N, Atrens A, Dietzel W, et al. Evaluation of the delayed hydride cracking mechanism for transgranular stress corrosion cracking of magnesium alloys [J]. Mater. Sci. Eng., 2007, A466: 18
[28] Makar G L, Kruger J, Sieradzki K. Stress corrosion cracking of rapidly solidified magnesium-aluminum alloys [J]. Corros. Sci., 1993, 34: 1311
[29] Moody N R, Thompson A W. Hydrogen Effects on Material Behavior [M]. Warrendale, PA: The Metallurgical Society Inc., 1990
[30] Gangloff R P. Hydrogen-assisted cracking [A].
[30] In: Milne I, Ritchie R O, Karihaloo B. Comprehensive Structural Integrity [M]. Oxford: Pergamon, 2003: 31
[31] Lynch S. Mechanisms of hydrogen assisted cracking-a review [A]. Proceeding of the International Conference on Hydrogen Effects on Material Behaviour and Corrosion Deformation Interactions [C]. Moran, WY, 2003: 449
[32] Kappes M, Iannuzzi M, Carranza R M. Hydrogen embrittlement of magnesium and magnesium alloys: A review [J]. J. Electrochem. Soc., 2013, 160: C168
[33] Cao F Y, Shi Z M, Song G L, et al. Stress corrosion cracking of several solution heat-treated Mg-X alloys [J]. Corros. Sci., 2015, 96: 121
[34] Uematsu Y, Kakiuchi T, Nakajima M. Stress corrosion cracking behavior of the wrought magnesium alloy AZ31 under controlled cathodic potentials [J]. Mater. Sci. Eng., 2012, A531: 171
[35] Chen J, Wang J Q, Han E-H, et al. Effect of hydrogen on stress corrosion cracking of magnesium alloy in 0.1 M Na2SO4 solution [J]. Mater. Sci. Eng., 2008, A488: 428
[36] Lynch S, Moody N, Thompson A, et al. Hydrogen effects on material behaviour and corrosion deformation interactions [A]. Proceedings of the International Conference Hydrogen Effects on Material Behaviour and Corrosion Deformation Interactions [C]. Warrendale, 2003: 22
[37] Choudhary L, Singh Raman R K. Magnesium alloys as body implants: Fracture mechanism under dynamic and static loadings in a physiological environment [J]. Acta Biomater., 2012, 8: 916
[38] Williams G, ap Llwyd Dafydd H, Grace R. The localised corrosion of Mg alloy AZ31 in chloride containing electrolyte studied by a scanning vibrating electrode technique [J]. Electrochim. Acta, 2013, 109: 489
[39] Yang Y, Scenini F, Curioni M. A study on magnesium corrosion by real-time imaging and electrochemical methods: Relationship between local processes and hydrogen evolution [J]. Electrochim. Acta, 2016, 198: 174
[40] Chmiela B, Mo?cicki A, Sozańska M. Investigation of stress corrosion cracking in magnesium alloys [J]. Solid State Phenom., 2013, 211: 89
[41] Chu W Y, Hsiao C M, Li S Q. Hydrogen induced delayed plasticity and cracking [J]. Scripta Metall. Mater, 1979, 13: 1063
[42] Myers S M, Baskes M I, Birnbaum H K, et al. Hydrogen interactions with defects in crystalline solids [J]. Rev. Mod. Phys., 1992, 64: 559
[43] Chakrapani D G, Pugh E N. On the fractography of transgranular stress corrosion failures in a Mg-Al alloy [J]. Corrosion, 1975, 31: 247
[44] Casajús P, Winzer N. Intergranular stress corrosion crack propagation in hot-rolled AZ31 Mg alloy sheet [J]. Mater. Sci. Eng., 2014, A602: 58
[45] Chen J, Wang J Q, Han E-H, et al. States and transport of hydrogen in the corrosion process of an AZ91 magnesium alloy in aqueous solution [J]. Corros. Sci., 2008, 50: 1292
[46] Kannan M B, Dietzel W, Blawert C, et al. Stress corrosion cracking of rare-earth containing magnesium alloys ZE41, QE22 and Elektron 21 (EV31A) compared with AZ80 [J]. Mater. Sci. Eng., 2008, A480: 529
[47] Guo K W. A review of magnesium/magnesium alloys corrosion and its protection [J]. Recent Pat. Corros. Sci., 2010, 2: 13
[48] Zhang E L, He W W, Du H, et al. Microstructure, mechanical properties and corrosion properties of Mg-Zn-Y alloy with low Zn content [J]. Mater. Sci. Eng., 2008, A488: 102
[49] Shi F, Yu Y C, Guo X F, et al. Corrosion behavior of as-cast Mg68Zn28Y4 alloy with I-phase [J]. Trans. Nonferrous Met. Soc. China, 2009, 19: 1093
[50] Wang S D, Xu D K, Chen X B, et al. Effect of heat treatment on the corrosion resistance and mechanical properties of an as-forged Mg-Zn-Y-Zr alloy [J]. Corros. Sci., 2015, 92: 228
[51] Song Y W, Shan D Y, Chen R S, et al. Effect of second phases on the corrosion behaviour of wrought Mg-Zn-Y-Zr alloy [J]. Corros. Sci., 2010, 52: 1830
[52] Song Y W, Han E-H, Shan D Y, et al. The role of second phases in the corrosion behavior of Mg-5Zn alloy [J]. Corros. Sci., 2012, 60: 238
[53] Popov I, Starosvetsky D, Shechtman D. Initial stages of corrosion within Mg-Zn-Y-Zr alloy in 1 g/L NaCl solution [J]. J. Mater. Sci., 2000, 35: 1
[54] Pardo A, Merino M C, Coy A E, et al. Influence of microstructure and composition on the corrosion behaviour of Mg/Al alloys in chloride media [J]. Electrochim. Acta, 2008, 53: 7890
[55] Tang W N, Chen R S, Zhou J, et al. Effects of ECAE temperature and billet orientation on the microstructure, texture evolution and mechanical properties of a Mg-Zn-Y-Zr alloy [J]. Mater. Sci. Eng., 2009, A499: 404
[56] Tang W N, Chen R S, Han E-H. Superplastic behaviors of a Mg-Zn-Y-Zr alloy processed by extrusion and equal channel angular extrusion [J]. J. Alloy. Compd., 2009, 477: 636
[57] Wu Q, Zhu S J, Wang L G, et al. The microstructure and properties of cyclic extrusion compression treated Mg-Zn-Y-Nd alloy for vascular stent application [J]. J. Mech. Behav. Biomed. Mater., 2012, 8: 1
[58] Liu X B, Shan D Y, Song Y W, et al. Effects of heat treatment on corrosion behaviors of Mg-3Zn magnesium alloy [J]. Trans. Nonferrous Met. Soc. China, 2010, 20: 1345
[59] Liang S Q, Guan D K, Tan X P. The relation between heat treatment and corrosion behavior of Mg-Gd-Y-Zr alloy [J]. Mater. Des., 2011, 32: 1194
[60] Wang S D, Xu D K, Wang B J, et al. Influence of phase dissolution and hydrogen absorption on the stress corrosion cracking behavior of Mg-7%Gd-5%Y-1%Nd-0.5%Zr alloy in 3.5 wt.% NaCl solution [J]. Corros. Sci., 2018, 142: 185
[61] Bhuiyan M S, Mutoh Y, Murai T, et al. Corrosion fatigue behavior of extruded magnesium alloy AZ61 under three different corrosive environments [J]. Int. J. Fatigue, 2008, 30: 1756
[62] Nan Z Y, Ishihara S, Goshima T. Corrosion fatigue behavior of extruded magnesium alloy AZ31 in sodium chloride solution [J]. Int. J. Fatigue, 2008, 30: 1181
[63] Sajuri Z B, Miyashita Y, Mutoh Y. Effects of humidity and temperature on the fatigue behaviour of an extruded AZ61 magnesium alloy [J]. Fatigue Fract. Eng. Mater. Stuct., 2005, 28: 373
[64] Rozali S, Mutoh Y, Nagata K. Effect of frequency on fatigue crack growth behavior of magnesium alloy AZ61 under immersed 3.5 mass% NaCl environment [J]. Mater. Sci. Eng., 2011, A528: 2509
[65] Tsao L C. Stress-corrosion cracking susceptibility of AZ31 alloy after varied heat-treatment in 3.5wt.%NaCl solution [J]. Int. J. Mater. Res., 2010, 101: 1166
[66] Wang S D, Xu D K, Wang B J, et al. Effect of solution treatment on stress corrosion cracking behavior of an as-forged Mg-Zn-Y-Zr alloy [J]. Sci. Rep., 2016, 6: 29471
[1] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[3] MA Mingwei, ZHAO Zhihao, JING Siwen, YU Wenfeng, GU Yien, WANG Xu, WU Ming. Corrosion Behavior of 17-4 PH Stainless Steel in Simulated Seawater Containing SRB[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[4] YUE Liangliang, MA Baoji. Effect of Ultrasonic Surface Rolling Process on Corrosion Behavior of AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[5] ZHU Lixia, JIA Haidong, LUO Jinheng, LI Lifeng, JIN Jian, WU Gang, XU Congmin. Effect of Applied Potential on Stress Corrosion Behavior of X80 Pipeline Steel and Its Weld Joint in a Simulated Liquor of Soil at Lunnan Area of Xinjiang[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[6] JIA Yizheng, WANG Baojie, ZHAO Mingjun, XU Daokui. Effect of Solid Solution Treatment on Corrosion and Hydrogen Evolution Behavior of an As-extruded Mg-Zn-Y-Nd Alloy in an Artificial Body Fluid[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.
[7] LIANG Yi, DU Yanxia. Research Progress on Evaluation Criteria and Mechanism of Corrosion Under Cathodic Protection and AC Interference[J]. 中国腐蚀与防护学报, 2020, 40(3): 215-222.
[8] ZHANG Zhen, WU Xinqiang, TAN Jibo. Review of Electrochemical Noise Technique for in situ Monitoring of Stress Corrosion Cracking[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[9] ZHANG Yao, GUO Chen, LIU Yanhui, HAO Meijuan, CHENG Shiming, CHENG Weili. Electrochemical Corrosion Behavior of Extruded Dilute Mg-2Sn-1Al-1Zn Alloy in Simulated Body Fluid[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.
[10] CHEN Xu,MA Jiong,LI Xin,WU Ming,SONG Bo. Synergistic Effect of SRB and Temperature on Stress Corrosion Cracking of X70 Steel in an ArtificialSea Mud Solution[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[11] JIA Yizheng, ZHAO Mingjun, CHENG Shijing, WANG Baojie, WANG Shuo, SHENG Liyuan, XU Daokui. Corrosion Behavior of Mg-Zn-Y-Nd Alloy in Simulated Body Fluid[J]. 中国腐蚀与防护学报, 2019, 39(6): 463-468.
[12] OUYANG Yuejun,HU Ting,WANG Jiayin,XIE Zhihui. Electrochemical Deposition and Characterization of Layered Double Hydroxide Film on Magnesium Alloys[J]. 中国腐蚀与防护学报, 2019, 39(5): 453-457.
[13] Li LIU,Sirong YU. Effect of Gd Addition on Corrosion Behavior of AM60 Magnesium Alloy[J]. 中国腐蚀与防护学报, 2019, 39(2): 185-191.
[14] Keqian ZHANG,Shilin HU,Zhanmei TANG,Pingzhu ZHANG. Review on Stress Corrosion Crack Propagation Behavior of Cold Worked Nuclear Structural Materials in High Temperature and High Pressure Water[J]. 中国腐蚀与防护学报, 2018, 38(6): 517-522.
[15] Xijing WANG, Boshi WANG, Chao YANG, Yan YANG, Bin SHEN. Hot Corrosion of Pure Nickel and Its Weld Joints in Molten Na2SO4-K2SO4 Salts[J]. 中国腐蚀与防护学报, 2018, 38(5): 495-501.
No Suggested Reading articles found!