Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2016, Vol. 36 Issue (6): 604-610    DOI: 10.11902/1005.4537.2016.177
Orginal Article Current Issue | Archive | Adv Search |
Effect of Nb on Corrosion Behavior of Simulated Weld HAZs of X80 Pipeline Steel in Simulated Seawater Environments Correxxxxsponding to Shallow Sea and Deep Sea
Zihao WANG,Yunhua HUANG(),Jia LI,Lang YANG,Donghan XIE
Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083, China
Download:  HTML  PDF(1684KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The simulated intercritical HAZ (ICHAZ), fine grained HAZ (FGHAZ) and coarse grained HAZ (CGHAZ) of weld joints for two Nb containing steels were prepared by means of heat treatment. Then their microstructure and distribution of nano-sized precipitates were characterized by means of optical microscopy and transmission electron microscopy. Their corrosion behavior in simulated seawater environments corresponding to shallow sea and deep sea of 600 m below sea level respectively were studied by conventional electrochemical techiques and immersion tests. It's shown that the corrosion rate of ICHAZ and CGHAZ is much higher than that of FGHAZ. What's more, with the addition of Nb, the microstructural homogeneity of the steel is improved and the corrosion products films formed on the steels become much compact, thus enhancing their corrosion resistance. Besides, the nano-sized NbC precipitates can act as traps for capturing hydrogen, thus enhancing their corrosion resistance also in the seawater of deep sea.

Key words:  HAZ      shallow seawater      deep seawater      Nb      corrosion behavior     

Cite this article: 

Zihao WANG,Yunhua HUANG,Jia LI,Lang YANG,Donghan XIE. Effect of Nb on Corrosion Behavior of Simulated Weld HAZs of X80 Pipeline Steel in Simulated Seawater Environments Correxxxxsponding to Shallow Sea and Deep Sea. Journal of Chinese Society for Corrosion and protection, 2016, 36(6): 604-610.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2016.177     OR     https://www.jcscp.org/EN/Y2016/V36/I6/604

Steel C Si Mn P S Nb Ti Mo Ni Cu Fe
With Nb 0.061 0.28 1.87 0.004 0.006 0.079 0.016 0.26 0.26 0.26 Bal.
Without Nb 0.058 0.28 1.85 0.004 0.006 0.004 0.016 0.26 0.26 0.26 Bal.
Table 1  Chemical compositions of two base materials (mass fraction / %)
Fig.1  Microstructures of X80 pipeline steels with different Nb contents and corresponding simulated HAZs: (a) BM with Nb, (b) BM without Nb, (c) ICHAZ with Nb, (d) ICHAZ without Nb, (e) FGHAZ with Nb, (f) FGHAZ without Nb, (g) CGHAZ with Nb, (h) CGHAZ without Nb
Fig.2  TEM images of precipitates in X80 pipeline steels with (a) and without (b) Nb
Fig.3  Hardnesses of X80 pipeline steels and correspondingsimulated HAZs
Fig.4  Potential dynamic polarization curves of X80 steels with (a) and without (b) Nb and corresponding simulated HAZs in shallow seawater
Fig.5  Potential dynamic polarization curves of X80 steels with (a) and without (b) Nb and corresponding simulatedHAZs in deep seawater
Fig.6  Corrosion current densities of X80 steels and corresponding simulated HAZs in shaollow (a) and deep (b)seawaters
Fig.7  Corrosion morphologies of X80 steels and corresponding simulated HAZs immersed in shallow seawater for 50 d: (a) BM with Nb, (b) BM without Nb, (c) ICHAZ with Nb, (d) ICHAZ without Nb, (e) FGHAZ with Nb, (f) FGHAZwithout Nb, (g) CGHAZ with Nb, (h) CGHAZ without Nb
Fig.8  Surface morphologies of X80 steels and corresponding simulated HAZs after removing of corrosion products fromedduring immersion in shallow seawater for 50 d: (a) BM with Nb, (b) BM without Nb, (c) ICHAZ with Nb, (d) ICHAZ without Nb, (e) FGHAZ with Nb, (f) FGHAZ without Nb, (g) CGHAZ with Nb, (h) CGHAZ without Nb
Fig.9  Corrosion rates of X80 steels and correspondingsimulated HAZs
[1] Sun Q L, Cao B, Wu Y S.Electrochemical behavior of various micro-areas on the welded joint of Q235 steel[J]. J. Univ. Sci. Technol., 2009, 31(1): 41
[1] (孙齐磊, 曹备, 吴荫顺. Q235管线钢焊接接头微区电化学行为[J]. 北京科技大学学报, 2009, 31(1): 41)
[2] Du C W, Liu Z Y, Liang P, et al.Short-term corrosion behavior of X70 pipeline steel with different microstructure in Ku'erle soil with saturated water[J]. Heat Treat. Met., 2008, 33(6): 80
[2] (杜翠薇, 刘智勇, 梁平等. 不同组织X70钢在库尔勒含饱和水土壤中的短期腐蚀行为[J]. 金属热处理, 2008, 33(6): 80)
[3] Fan Z, Liu J Y, Li S L, et al.Microstructure and seawater corrosion to welding joint of X70 pipeline steel[J]. J. Southwest Petrol. Univ.(Nat. Sci.), 2009, 31(5): 171
[3] (范舟, 刘建仪, 李士伦等. X70管线钢焊接接头组织及其海水腐蚀规律[J]. 西南石油大学学报 (自然科学版), 2009, 31(5): 171)
[4] Liu Z Y, Wan H X, Li C, et al.Comparative study on corrosion of X65 pipeline steel welded joint in simulated shallow and deep sea environment[J]. J. Chin. Soc. Corros. Prot., 2014, 34(4): 321
[4] (刘智勇, 万红霞, 李禅等. X65钢焊接接头在模拟浅表海水和深海环境中的腐蚀行为对比[J]. 中国腐蚀与防护学报, 2014, 34(4): 321)
[5] Wei S, Lu S.Effects of multiple normalizing processes on the microstructure and mechanical properties of low carbon steel weld metal with and without Nb[J]. Mater. Des., 2012, 35: 43
[6] Miao C L, Liu Z W, Guo H, et al.Effect of Nb content and heat input on coarse-grained welding heat affected zone of X80 pipeline steels[J]. T. Mater. Heat Treat., 2012, 33(1): 99
[6] (缪成亮, 刘振伟, 郭晖等. Nb含量和热输入量对X80管线钢焊接粗晶区的影响[J]. 材料热处理学报, 2012, 33(1): 99)
[7] Lu S, Wei S, Li D, et al.Effects of heat treatment process and niobium addition on the microstructure and mechanical properties of low carbon steel weld metal[J]. J. Mater. Sci., 2010, 45(9): 2390
[8] Zhang S, Huang Y, Sun B, et al.Effect of Nb on hydrogen-induced delayed fracture in high strength hot stamping steels[J]. Mater. Sci. Eng., 2015, A626: 136
[9] Ma H C, Liu Z Y, Du C W, et al.Stress corrosion cracking of E690 steel as a welded joint in a simulated marine atmosphere containing sulphur dioxide[J]. Corros. Sci., 2015, 100: 627
[10] Wang L W, Li X G, Du C W, et al.In-situ corrosion characterization of API X80 steel and its corresponding HAZ microstructures in an acidic environment[J]. J. Iron Steel Res. Int., 2015, 22(2): 135
[11] Ma H, Liu Z, Du C, et al.Comparative study of the SCC behavior of E690 steel and simulated HAZ microstructures in a SO2-polluted marine atmosphere[J]. Mater. Sci. Eng., 2015, A650: 93
[12] Mohammadi F, Eliyan F F, Alfantazi A.Corrosion of simulated weld HAZ of API X-80 pipeline steel[J]. Corros. Sci., 2012, 63(12): 323
[13] Wang X N, Chen C J, Wang H S, et al.Microstructure formation and precipitation in laser welding of microalloyed C-Mn steel[J]. J. Mater. Process. Technol., 2015, 226: 106
[14] Sun F L.The Corrosion behavior and SCC susceptibility of X70 steel in deep ocean environment [D]. Beijing: University of Science & Technology Beijing, 2013
[14] (孙飞龙. X70钢在深海环境中的腐蚀规律和应力腐蚀敏感性研究 [D]. 北京: 北京科技大学, 2013)
[15] Yue Y J, Tang D, Wu H B, et al.Influence of Nb on corrosion behavior of low alloy steel in strong-acid Cl- solution environment[J]. J. Mater. Eng., 2015, 43(6): 14
[15] (岳远杰, 唐荻, 武会宾等. Nb对高含Cl-强酸性溶液环境中低合金钢腐蚀性能的影响[J]. 材料工程, 2015, 43(6): 14)
[1] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[2] LI Lin, CHEN Yiqing, GAO Peng, AI Fangfang, ZHONG Bin, SAN Hongyu, YANG Ying. Corrosion Resistance of Various Bridge Steels in Deicing Salt Environments[J]. 中国腐蚀与防护学报, 2020, 40(5): 448-454.
[3] ZHANG Xin, YANG Guangheng, WANG Zehua, CAO Jing, SHAO Jia, ZHOU Zehua. Corrosion Behavior of Al-Mg-RE Alloy Wires Subjected to Different Cold Drawing Deformation[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[4] HU Lulu, ZHAO Xuyang, LIU Pan, WU Fangfang, ZHANG Jianqing, LENG Wenhua, CAO Fahe. Effect of AC Electric Field and Thickness of Electrolyte Film on Corrosion Behavior of A6082-T6 Al Alloy[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[5] WANG Xinhua, YANG Yong, CHEN Yingchun, WEI Kailing. Effect of Alternating Current on Corrosion Behavior of X100 Pipeline Steel in a Simulated Solution for Soil Medium at Korla District[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[6] HU Yuting, DONG Pengfei, JIANG Li, XIAO Kui, DONG Chaofang, WU Junsheng, LI Xiaogang. Corrosion Behavior of Riveted Joints of TC4 Ti-Alloy and 316L Stainless Steel in Simulated Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[7] SHEN Shuyang, WANG Dongsheng, SUN Shibin, YANG Ti, ZHAO Qianjing, WANG Xin, ZHANG Yafei, CHANG Xueting. Corrosion Behavior in Artificial Seawater of Subzero Treated EH40 Marine Steel Suitable for ExtremelyCold Environments[J]. 中国腐蚀与防护学报, 2020, 40(2): 151-158.
[8] SU Xiaohong,HU Huie,KONG Xiaodong. Corrosion Behavior of W Particles/Zr41.2Ti13.8Cu12.5Ni10Be22.5 Metallic Glass Matrix Composite in 3%NaCl Solution[J]. 中国腐蚀与防护学报, 2020, 40(1): 70-74.
[9] WANG Qinying,PEI Rui,XI Yuchen. Erosion-corrosion Behavior of Laser-clad Ni-based Alloy Coating on Q235 Carbon Steel[J]. 中国腐蚀与防护学报, 2019, 39(5): 458-462.
[10] SHI Kunyu,ZHANG Jinzhong,ZHANG Yi,WAN Yi. Preparation and Corrosion Resistance of Nb2N Coating on TC4 Ti-alloy[J]. 中国腐蚀与防护学报, 2019, 39(4): 313-318.
[11] GUO Tieming,ZHANG Yanwen,QIN Junshan,SONG Zhitao,DONG Jianjun. Corrosion Behavior of Q345q Bridge Steel in Three Simulated Atmospheres[J]. 中国腐蚀与防护学报, 2019, 39(4): 319-330.
[12] Bobo HUANG,Ping LIU,Xinkuan LIU,Pinxiu MEI,Xiaohong CHEN. Seawater Corrosion Behavior of New 70-1 Tin Brass Net in Waters off Dachen Island for Two Years[J]. 中国腐蚀与防护学报, 2018, 38(6): 594-600.
[13] Haijiao CAO, Yinghua WEI, Hongtao ZHAO, Chenxi LV, Yaozong MAO, Jing LI. Effect of Preheating Time on Protective Performance of Fusion Bonded Epoxy Powder Coating on Q345 Steel II: Failure Behavior Analysis of Coating[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.
[14] Jie ZHANG, Xiuhua HU, Chuanbo ZHENG, Jizhou DUAN, Baorong HOU. Influence of Calcareous Deposit on Corrosion Behavior of Q235 Carbon Steel in Marine Microalgae Containing Medium[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.
[15] Ziyang ZHANG,Shanlin WANG,Hengyu ZHANG,Liming KE. Corrosion Behavior of Joints of Mg-alloy AZ31 Fabricated by Friction Stir Welding[J]. 中国腐蚀与防护学报, 2017, 37(2): 117-125.
No Suggested Reading articles found!