Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2016, Vol. 36 Issue (5): 505-512    DOI: 10.11902/1005.4537.2015.203
Orginal Article Current Issue | Archive | Adv Search |
Effect of Sulfur Content on Corrosion Behavior of Candidate Alloys Used for 700 ℃ Level A-USC Boiler in Simulated Coal Ash and Flue Gas Environments
Yan LI1,2,Jintao LU1(),Zhen YANG1,Ming ZHU2,Yuefeng GU1
1. National Energy R&D Center of Clean and High-efficiency Fossil-fired Power Generation Technology, Xi′an Thermal Power Research Institute Co., Ltd., Xi′an 710032, China
2. College of Materials Science and Engineering, Xi′an University of Science and Technology,Xi′an 710054, China
Download:  HTML  PDF(7225KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Corrosion behavior of two typical advanced ultra-supercritical (A-USC) boiler alloys, Ni-Co based CCA 617 and Fe-Ni based GH 2984, in simulated coal ash and flue gas environments with different sulfur content at 750 ℃ was studied. Results indicated that in the 0.02%SO2 containing environment, the corrosion rate of the two alloys was slow and the formed oxide scale was compact, dense and adherent to the substrate, while there existed only minor inner sulfides beneath the oxide scale. In the 1.5%SO2 containing environment, the corrosion rate was increase significantly, and the oxide scale thickened and suffered from spallation, while the inner sulfidation became significant. In the environments with different sulfur contents, the two alloys formed more or less the same corrosion products: the corrosion products of GH 2984 consisted of Fe2O3, Cr2O3, minor NiCr2O4 and sulfide; while that of CCA 617 consisted mainly of Cr2O3 with a small amount of (Ni, Co)Cr2O4, Al2O3 and sulfide. Besides, the corrosion mechanism and the effect of sulfur content on the corrosion process of two alloys were also discussed.

Key words:  A-USC      alloy      sulfur content      high temperature corrosion      corrosion mechanism     

Cite this article: 

Yan LI,Jintao LU,Zhen YANG,Ming ZHU,Yuefeng GU. Effect of Sulfur Content on Corrosion Behavior of Candidate Alloys Used for 700 ℃ Level A-USC Boiler in Simulated Coal Ash and Flue Gas Environments. Journal of Chinese Society for Corrosion and protection, 2016, 36(5): 505-512.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2015.203     OR     https://www.jcscp.org/EN/Y2016/V36/I5/505

Fig.1  Schematic diagram of corrosion experiment set-up
Alloy Cr Mo Mn Ti Fe Al Co Si Ni
CCA 617 22.5 9.01 0.27 0.68 0.77 0.97 13.8 0.45 51.72
GH 2984 18.8 2.29 --- 1.14 34.3 0.46 --- --- 42.95
Table 1  Chemical compositions of CCA 617 and GH 2984 alloys(mass fraction / %)
S content H2O (g) O2 (g) CO2 (g) SO2 (g) N2 (g)
Lean 5 3.5 10 0.02 Bal.
Rich 5 3.5 10 1.5 Bal.
Table 2  Compositions of used gases for corrosion experiments(volume fraction / %)
Fig.2  Mass gain curves of CCA 617 and GH 2984 alloys during corrosion in SO2 containing gases at 750 ℃
Fig.3  XRD patterns of corrosion products of CCA 617 and GH 2984 alloys after corrosion in SO2 containing gases at 750 ℃ for 500 h
Fig.4  Surface and cross sectional morphologies of CCA 617 alloy after corrosion in 0.02% (a, b) and 1.5% (c, d) SO2 containing gases at 750 ℃ for 500 h
Fig.5  Surface and cross sectional morphologies of the GH 2984 alloy after corrosion in 0.02% (a, b) and 1.5% (c, d) SO2 containing gases at 750 ℃ for 500 h
Fig.6  Element mappings of CCA 617 (a) and GH 2984 (b) alloys after corrosion at 750 ℃ for 500 h in 1.5%SO2containing gases
Fig.7  Corrosion process of CCA 617 alloy
Fig.8  Corrosion process of GH 2984 alloy
Fig.9  Equilibrium phase diagram of M-O-S system
[1] Zhao S Q, Xie X S, Smith G D.The corrosion of Inconel 740 in simulated environments for pulverized coal-fired boiler[J]. Mater. Chem. Phys., 2005, 90(2): 275
[2] Lin F S, Xie X S, Zhao S Q, et al.Selection of superalloys for superheater tubes of domestic 700 ℃ A-USC boilers[J]. J. Chin. Soc. Power Eng., 2011, 31(12): 960
[2] (林富生, 谢锡善, 赵双群等. 我国700 ℃超超临界锅炉过热器管用高温合金选材探讨[J]. 动力工程学报, 2011, 31(12): 960)
[3] Gosia S B, J?rg M, Günter S.Nickel-base superalloys for ultrasupercritical coal fired power plants: Fireside corrosion. Laboratory studies and power plant exposures[J]. Fuel, 2013, 108: 521
[4] Du X K, Guo J T.A superheater tube superalloy GH 2984 with excellent properties[J]. Acta Metall. Sin., 2005, 41(11): 1221
[4] (杜秀魁, 郭建亭. 一种性能优异的过热器管材用高温合金GH 2984[J]. 金属学报, 2005, 41(11): 1221)
[5] Husain T, Syed A U, Simms N J.Fireside corrosion of superheater materials in coal/biomass co-fired advanced power plants[J]. Oxid. Met., 2013, 80: 529
[6] Holcomb G R, Tylcaak J, Meier G H, et al.Fireside corrosion in oxy-fuel combustion of coal[J]. Oxid. Met., 2013, 80: 599
[7] Lu J T, Gu Y F, Yang Z.Coal ash induced corrosion of three candidate materials for superheater boiler tubes of advance ultrasuperitical power station[J]. Corros. Sci. Prot. Technol., 2014, 26(3): 205
[7] (鲁金涛, 谷月峰, 杨珍. 3种700 ℃级超超临界燃煤锅炉备选高温合金煤灰腐蚀行为研究[J]. 腐蚀科学与防护技术, 2014, 26(3): 205)
[8] Hussain T, Syed A U, Simms N J.Trend in fireside corrosion damage to superheaters in air and oxy-firing of coal/biomass[J]. Fuel, 2013, 113: 787
[9] Jiang Y, Zhao S Q, Li W G.Corrosion behavior of modified Ni based alloy Inconel 740H in simulated coal ash and flue gas environments[J]. Mater. Mech. Eng., 2008, 32(12): 29
[9] (江涌, 赵双群, 李维根. 改进型Inconel 740镍基高温合金在模拟煤灰和烟气环境中的腐蚀行为[J]. 机械工程材料, 2008, 32(12): 29)
[10] Wang S H, Du X K, Guo J T, et al.Anticorrosion performance of GH 2984 alloy under various environmental conditions[J]. Corros. Sci. Prot. Technol., 2002, 14(5): 284
[10] (王淑荷, 杜秀魁, 郭建亭等. 舰用GH984合金在不同环境中的腐蚀性能[J]. 腐蚀科学与防护技术, 2002, 14(5): 284)
[11] Patel S J, Baker B A, Gollihue R D.Nickel base superalloys for next generation coal fired AUSC power plants[J]. Procedia Eng., 2013, 55: 246
[12] Gosia S, Hasbeidy D, J?rg M, et al.Impact of oxy-fuel combustion on fly ash transformations and resulting corrosion behavior of alloys 310 and 617[J]. Energy Procedia, 2013, 37: 1462
[13] Hack H, Stanko G.Effect of fuel composition and temperature on fireside corrosion resistance of materials for advanced ultrasupercritical coal fired power plants[J]. Energy Mater., 2007, 2(4): 241
[14] Gosia S B, Maier J, Scheffknecht G.Impact of oxy-fuel combustion on the corrosion behavior of advanced austenitic superheater materials[J]. Energy Procedia, 2011, 4: 2035
[15] Gosia S B, Maier J, Scheffknecht G, et al.Fireside corrosion during oxyfuel combustion considering various SO2 contents [A]. 7th Trondheim CCS Conference[C]. Trondheim, 2013
[16] Syed A U, Simms N J, Oakey J E.Fireside corrosion of superheaters: Effects of air and oxy-firing of coal and biomass[J]. Fuel, 2012, 101: 62
[17] Zeng Z, Nasten K, Cai Z, et al.Effect of coal ash on the performance of alloys in simulated oxy-fuel environments[J]. Fuel, 2014, 30(117): 133
[18] Gagliano M, Hack H, Stanko G.Update on the fireside corrosion resistence of proposed advance ultersupercritical superheater and reheater materials: Laboratory and fieid test results [A]. The 34th clear conference on coal utilization and fuel systems[C]. Clearwater FL, 2009
[19] Natesan K, Park J H.Fireside and steamside corrosion of alloys for USC plants[J]. Int. J. Hydrogen Energy, 2007, 32: 3689
[20] Hack H, Stanko G, Gagliano M S.Fireside corrosion resistance of proposed USC superhester and reheater materials: Laboratory and field test results [A]. 33th international technical conference on coal utilization & fuel systems[C]. Clearwater, 2008
[21] Li M S.High Temperature Corrosion of Metals [M]. Beijing: Metallurgical Industry Press, 2001
[21] (李美栓. 金属的高温腐蚀 [M]. 北京: 冶金工业出版社, 2001)
[22] Srivastava S C, Godiwalla K M, Banerjee M K.Review fuel ash corrosion of boiler and superheater tubes[J]. J. Mater. Sci., 1997, 32(4): 835
[1] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[2] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[3] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[4] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[5] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[6] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[7] YU Haoran, ZHANG Wenli, CUI Zhongyu. Difference in Corrosion Behavior of Four Mg-alloys in Cl--NH4+-NO3- Containing Solution[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[8] YUE Liangliang, MA Baoji. Effect of Ultrasonic Surface Rolling Process on Corrosion Behavior of AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[9] ZHANG Xin, YANG Guangheng, WANG Zehua, CAO Jing, SHAO Jia, ZHOU Zehua. Corrosion Behavior of Al-Mg-RE Alloy Wires Subjected to Different Cold Drawing Deformation[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[10] DING Qingmiao, QIN Yongxiang, CUI Yanyu. Galvanic Corrosion of Aircraft Components in Atmospheric Environment[J]. 中国腐蚀与防护学报, 2020, 40(5): 455-462.
[11] ZHU Lixia, JIA Haidong, LUO Jinheng, LI Lifeng, JIN Jian, WU Gang, XU Congmin. Effect of Applied Potential on Stress Corrosion Behavior of X80 Pipeline Steel and Its Weld Joint in a Simulated Liquor of Soil at Lunnan Area of Xinjiang[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[12] JIA Yizheng, WANG Baojie, ZHAO Mingjun, XU Daokui. Effect of Solid Solution Treatment on Corrosion and Hydrogen Evolution Behavior of an As-extruded Mg-Zn-Y-Nd Alloy in an Artificial Body Fluid[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.
[13] HU Lulu, ZHAO Xuyang, LIU Pan, WU Fangfang, ZHANG Jianqing, LENG Wenhua, CAO Fahe. Effect of AC Electric Field and Thickness of Electrolyte Film on Corrosion Behavior of A6082-T6 Al Alloy[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[14] CAO Jingyi, FANG Zhigang, CHEN Jinhui, CHEN Zhixiong, YIN Wenchang, YANG Yange, ZHANG Wei. Preparation and Properties of Micro-arc Oxide Film with Single Dense Layer on Surface of 5083 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[15] LIANG Yi, DU Yanxia. Research Progress on Evaluation Criteria and Mechanism of Corrosion Under Cathodic Protection and AC Interference[J]. 中国腐蚀与防护学报, 2020, 40(3): 215-222.
No Suggested Reading articles found!