Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2016, Vol. 36 Issue (2): 165-171    DOI: 10.11902/1005.4537.2015.227
Orginal Article Current Issue | Archive | Adv Search |
Effect of Exposure to Steam on Corrosion of Type 439 Stainless Steel for Automotive Mufflers
Changpeng WANG,Yufeng SHEN,Congcong CHEN,Moucheng LI()
Institute of Materials, Shanghai University, Shanghai 200072, China
Download:  HTML  PDF(983KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The influence of steam on the corrosion behavior of 439 stainless steel for automotive mufflers was studied by means of cyclic hot air oxidation-immersion in condensate test and cyclic hot air oxidation-immersion in condensate-exposure to steam test as well as electrochemical measurements, SEM, XRD and pitting depth analyses. The results show that all the specimens, after cyclic hot air oxidation-immersion in condensate test and then with and without subsequent exposure to steam test, suffered from pitting corrosion with similar corrosion products. However, the specimens show lower corrosion resistance and deeper corrosion pits when they had experienced the exposure to steam test rather than those only experienced the cyclic hot air oxidation-immersion in condensate test. The exposure to steam may facilitate the growth of corrosion products and pits.

Key words:  automobile exhaust system      condensate corrosion      steam      pitting     

Cite this article: 

Changpeng WANG,Yufeng SHEN,Congcong CHEN,Moucheng LI. Effect of Exposure to Steam on Corrosion of Type 439 Stainless Steel for Automotive Mufflers. Journal of Chinese Society for Corrosion and protection, 2016, 36(2): 165-171.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2015.227     OR     https://www.jcscp.org/EN/Y2016/V36/I2/165

Fig.1  Schematic diagrams of immersion test (a) and steam test (b)
Step GA GB
1 Oxidized in air at 400 ℃ for 1 h, then cooled to room temperature Oxidized in air at 400 ℃ for 1 h, then cooled to room temperature
2 Immersed in condensate at 80 ℃ for 10 h Immersed in condensate at 80 ℃ for 2 h
3 --- Exposed in steam environment at 80 ℃ for 8 h
Table 1  Single cycle procedures of GA and GB specimens in cyclic corrosion tests
Fig.2  SEM morphologies of corrosed specimens GA (a, c) and GB (b, d) before (a, b) and after (c, d) derusting, respectively
Fig.3  XRD patterns of corrosion products formed on the specimen surfaces after cyclic tests
Fig.4  Variations of corrosion potential of specimens with cyclic time
Fig.5  Nyquist (a, c) and Bode (b, d) plots for GA (a, b) and GB (c, d) specimens at different cycles
Fig.6  Equivalent circuit model for the corrosion of specimens in condensate solution
Fig.7  Fitted values for Rf (a) and Rt (b)
Fig.8  Pit depths of GA and GB specimens
[1] Sato E, Tanoue T.Present and future trends of materials for automotive exhaust system[J]. Nippon Steel Tech. Rep., 1995, 64: 13
[2] Inoue Y, Kikuchi M.Present and future trends of stainless steel for automotive exhaust system[J]. Nippon Steel Tech. Rep., 2003, 88:62
[3] Miyazaki A, Hirasawa J, Satoh S.Advanced stainless steels for stricter regulations of automotwe exhaust gas[J]. Kawasaki Steel Tech. Rep., 2000, 43: 21
[4] Douthett J.Automotive Exhaust System Corrosion, ASM Handbook Volume 13C[M]. Ohio: ASM International, 2006
[5] Chang S, Jun J H.Corrosion resistance of automotive exhaust materials[J]. J. Mater. Sci. Lett., 1999, 18(5): 419
[6] Li M C, Wang S D, Ma R Y, et al.Effect of cyclic oxidation on electrochemical corrosion of type 409 stainless steel in the simulated muffler condensates[J]. J. Solid State Electrochem., 2012, 16(9): 3059
[7] Han P H, Xu Z H, Wang C P, et al.Condensate corrosion behavior of type 409 stainless steel in simulated automotive muffler environments[J]. Int. J. Electrochem. Sci., 2014, 9: 3784
[8] Othman N K, Zhang J Q, Young D J.Water vapour effects on Fe-Cr alloy oxidation[J]. Oxid. Met., 2010, 73(1): 337
[9] Dillmann P, Mazaudier F, Hoerle S.Advances in understanding atmospheric corrosion of iron. I: Rust characterisation of ancient ferrous artefacts exposed to indoor atmospheric corrosion[J]. Corros. Sci., 2004, 46(6): 1401
[10] Hoerle S, Mazaudier F, Dillmann P, et al.Advances in understanding atmospheric corrosion of iron. II: Mechanistic modelling of wet-dry cycles[J]. Corros. Sci., 2004, 46(6): 1431
[11] Li M C, Zhang H, Huang R F, et al.Effect of SO2 on oxidation of type 409 stainless steel and its implication on condensate corrosion in automotive mufflers[J]. Corros. Sci., 2014, 80: 96
[12] Hashimoto R, Mori G, Yasir M, et al.Impact of condensates containing chloride and sulphate on the corrosion in automotive exhaust systems[J]. Berg-und Hüttenmännische Monatshefte, 2013, 158(9): 377
[13] Kim D W, Kim H S.Effects of thermal oxidation on corrosion resistance of stainless steels for muffler materials[J]. J. Korean. Inst. Met. Mater., 2008, 46(10): 652
[14] Jarrah A, Bigerelle M, Guillemot G, et al.A generic statistical methodology to predict the maximum pit depth of a localized corrosion process[J]. Corros. Sci., 2011, 53(8): 2453
[15] Stratmann M, Muller J.The mechanism of the oxygen reduction on rust-covered metal substrates[J]. Corros. Sci., 1994, 36(2): 327
[16] Saunders S R J, Monteiro M, Rizzo F. The oxidation behavior of metals and alloys at high temperatures in atmospheres containing water vapour: A review[J]. Prog. Mater. Sci., 2008, 53(5): 775
[17] Hamadou L, Kadri A, Benbrahim N.Impedance investigation of thermally formed oxide films on AISI 304L stainless steel[J]. Corros. Sci., 2010, 52(3): 859
[18] Kocijan A, Merl D K, Jenko M.The corrosion behaviour of austenitic and duplex stainless steels in artificial saliva with the addition of fluoride[J]. Corros. Sci., 2011, 53(2): 776
[19] Wang J, Cao C N, Lin H C.Features of AC impedance of pitting corroded electrodes during pits propagation[J]. J. Chin. Soc. Corros. Prot., 1989, 9(4): 271
[19] (王佳, 曹楚南, 林海潮. 孔蚀发展期的电极阻抗频谱特征[J]. 中国腐蚀与防护学报, 1989, 9(4): 271)
[20] Melchers R E.Extreme value statistics and long-term marine pitting corrosion of steel[J]. Probab. Eng. Mech., 2008, 23(4): 482
[21] Tsuru T, Tamiya K I, Nishikata A.Formation and growth of micro-droplets during the initial stage of atmospheric corrosion[J]. Electrochim. Acta, 2004, 49(17): 2709
[22] Tsuru T, Nishikata A, Wang J.Electrochemical studies on corrosion under a water film[J]. Mater. Sci. Eng., 1995, A198(1): 161
[23] Chen J, Wang J Q, Han E-H, et al.In situ observation of formation and spreading of micro-droplets on magnesium and its alloy under cyclic wet-dry conditions[J]. Corros. Sci., 2007, 49(3): 1625
[1] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[3] YU Haoran, ZHANG Wenli, CUI Zhongyu. Difference in Corrosion Behavior of Four Mg-alloys in Cl--NH4+-NO3- Containing Solution[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[4] DAI Mingjie, LIU Jing, HUANG Feng, HU Qian, LI Shuang. Pitting Corrosion Behavior of X100 Pipeline Steel in a Simulated Acidic Soil Solution under Fluctuated Cathodic Protection Potentials Based on Orthogonal Method[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[5] ZHANG Xin, YANG Guangheng, WANG Zehua, CAO Jing, SHAO Jia, ZHOU Zehua. Corrosion Behavior of Al-Mg-RE Alloy Wires Subjected to Different Cold Drawing Deformation[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[6] HE San, SUN Yinjuan, ZHANG Zhihao, CHENG Jie, QIU Yunpeng, GAO Chaoyang. Corrosion Behavior of 20# Steel in Alkanolamine Solution Mixed with Ionic Liquid Containing Saturated CO2[J]. 中国腐蚀与防护学报, 2020, 40(4): 309-316.
[7] LI Qing, ZHANG Deping, WANG Wei, WU Wei, LU Lin, AI Chi. Evaluation of Actual Corrosion Status of L80 Tubing Steel and Subsequent Electrochemical and SCC Investigation in Lab[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[8] JIA Yizheng, WANG Baojie, ZHAO Mingjun, XU Daokui. Effect of Solid Solution Treatment on Corrosion and Hydrogen Evolution Behavior of an As-extruded Mg-Zn-Y-Nd Alloy in an Artificial Body Fluid[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.
[9] HE Zhuang,WANG Xingping,LIU Zihan,SHENG Yaoquan,MI Mengxin,CHEN Lin,ZHANG Yan,LI Yuchun. Passivation and Pitting of 316L and HR-2 Stainless Steel in Hydrochloric Acid Liquid Membrane Environment[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
[10] SU Xiaohong,HU Huie,KONG Xiaodong. Corrosion Behavior of W Particles/Zr41.2Ti13.8Cu12.5Ni10Be22.5 Metallic Glass Matrix Composite in 3%NaCl Solution[J]. 中国腐蚀与防护学报, 2020, 40(1): 70-74.
[11] WANG Biao,DU Nan,ZHANG Hao,WANG Shuaixing,ZHAO Qing. Accelerating Effect of Pitting Corrosion Products on Metastable Pitting Initiation and the Stable Pitting Growth of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(4): 338-344.
[12] Yu LI,Lei GUAN,Guan WANG,Bo ZHANG,Wei KE. Influence of Mechanical Stresses on Pitting Corrosion of Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(3): 215-226.
[13] Yunhai MA. Effect of Shot Peening on Oxidation Resistance of Super 304H Steel in Supercritical Steam[J]. 中国腐蚀与防护学报, 2019, 39(3): 245-252.
[14] Siqi ZHANG,Nan DU,Meifeng WANG,Shuaixing WANG,Qing ZHAO. Effect of Cathode Area on Stable Pitting Growth Rate of 304 Stainless Steel in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2018, 38(6): 551-557.
[15] Bobo HUANG,Ping LIU,Xinkuan LIU,Pinxiu MEI,Xiaohong CHEN. Seawater Corrosion Behavior of New 70-1 Tin Brass Net in Waters off Dachen Island for Two Years[J]. 中国腐蚀与防护学报, 2018, 38(6): 594-600.
No Suggested Reading articles found!