Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2016, Vol. 36 Issue (1): 73-78    DOI: 10.11902/1005.4537.2015.035
Orginal Article Current Issue | Archive | Adv Search |
Structure and Properties of a Micro-arc Oxidation Coating Coupled with Nano-Al2O3 Particles on AZ31B Magnesium Alloy
Xuejun CUI(),Ruisong YANG,Mingtian LI
Material Corrosion and Protection Key Laboratory of Sichuan Province, College of Materials and Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
Download:  HTML  PDF(2217KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A micro-arc oxidation (MAO) coating coupled with nano-Al2O3 particles was produced on AZ31B Mg alloy by a constant voltage mode in a nano-Al2O3 particles containing Na2SiO3-NaOH aqueous solution assisted with ultrasonic vibration, and then its morphology, phase composition, corrosion- and wear-resistance were investigated by scanning electron microscopy, X-ray diffraction, electrochemical method in 3.5%(mass fraction) NaCl solution, and friction and wear tester, respectively. The results show that the coupled nano-Al2O3 particles lead the MAO coating to be thicker and denser with smaller sized pores, and the coatings composed of MgO, MgSiO3, and Al2O3. The AZ31B Mg alloy covered with MAO coating coupled with nano-Al2O3 particles shows a corrosion current density about one order of magnitude lower than the one without nano-Al2O3 particles, and the former MAO coating also shows smaller friction coefficient by applied loads of 5 and 10 N respectively. Therefore, the addition of Al2O3 particles to electrolyte solution can clearly enhance the corrosion- and wear-resistance of the MAO coating. The above effect may be ascribed to the fact that the coupled nano-Al2O3 particles dispersed into the coating pores, and then enables the MAO coating to be much dense and strengthened, and in turn, enhances its corrosion- and wear-resistance.

Key words:  magnesium alloy      micro-arc oxidation      nano-Al2O3      corrosion resistance      wearresistance     

Cite this article: 

Xuejun CUI,Ruisong YANG,Mingtian LI. Structure and Properties of a Micro-arc Oxidation Coating Coupled with Nano-Al2O3 Particles on AZ31B Magnesium Alloy. Journal of Chinese Society for Corrosion and protection, 2016, 36(1): 73-78.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2015.035     OR     https://www.jcscp.org/EN/Y2016/V36/I1/73

Fig.1  Surface morphologies of MAO coatings without (a) and with (b) Al2O3 nanoparticles
Fig.2  Cross-sectional morphologies of MAO coatings without (a) and with (b) Al2O3 nanoparticles
Fig.3  XRD patterns of MAO coatings without and with Al2O3 nanoparticles
Fig.4  Polarization curves of AZ31B alloy before and after MAO in 3.5%NaCl solution
Fig.5  Changes of friction coefficient of MAO coatings without and with Al2O3 nanoparticles under dry conditions of 5 N (a) and 10 N (b)
Material ba / mVdec-1 -bc / mVdec-1 -Ecorr / mV Icorr / μAcm-2 Rp / kΩcm2
Uncoated AZ31B 42.4 125.9 1464 105.800 0.154
MAO sample without Al2O3 33.6 240.0 1523 3.400 3.240
MAO sample with Al2O3 225.6 190.8 1471 0.275 163.400
Table 1  Fitting results of the polarization curves in Fig.4
[1] Vladimirov B V, Krit B L, Lyudin V B, et al.Microarc oxidation of magnesium alloys: A review[J]. Surf. Eng. Appl. Electrochem., 2014, 50(3): 195
[2] Pommiers S, Frayret J, Castetbon A, et al.Alternative conversion coatings to chromate for the protection of magnesium alloys[J]. Corros. Sci., 2014, 84: 135
[3] Zhang L, Zhang J Q, Chen C F, et al.Advances in microarc oxidation coated AZ31 Mg alloys for biomedical applications[J]. Corros. Sci., 2015, 91: 7
[4] Hu R G, Zhang S, Bu J F, et al.Recent progress in corrosion protection of magnesium alloys by organic coatings[J]. Prog. Org. Coat., 2012, 73: 129
[5] Liu Y, Yang F W, Zhang Z, et al.Current status of surface treatment for magnsium alloy[J]. Corros. Sci. Prot. Technol., 2012, 24(6): 518
[5] (刘妍, 杨富巍, 张昭等. 镁合金表面处理技术的研究进展[J]. 腐蚀科学与防护技术, 2013, 25(6): 518)
[6] Hao J M, Chen H, Zhang R J, et al.Corrosion resistances of magnesium alloys by micro-arc oxidation and anodic oxidation[J]. Mater. Prot., 2003, 36(1): 20
[6] (郝建民, 陈宏, 张荣军等. 微弧氧化和阳极氧化处理镁合金的耐蚀性对比[J]. 材料保护, 2003, 36(1): 20)
[7] Cui X J, Liu C H, Yang R S, et al.Duplex-layered manganese phosphate conversion coating on AZ31 Mg alloy and its initial formation mechanism[J]. Corros. Sci., 2013, 76: 474
[8] Yang H Y, Guo X W, Chen X B, et al.A homogenisation pre-treatment for adherent and corrosion-resistant Ni electroplated coatings on Mg-alloy AZ91D[J]. Corros. Sci., 2014, 79: 41
[9] Song Z W, Xie Z H, Yu G, et al.A novel palladium-free surface activation process for electroless nickel deposition on micro-arc oxidation film of AZ91D Mg alloy[J]. J. Alloys Compd., 2015, 623: 274
[10] Liu F, Shan D Y, Song Y W, et al.Corrosion behavior of the composite ceramic coating containing zirconium oxides on AM30 magnesium alloy by plasma electrolytic oxidation[J]. Corros. Sci.,2011, 53: 3845
[11] Dong K H, Sun S, Song Y W, et al.Optimization of electrical parameters of micro-arc oxidation using novel fluotitanate electrolyte on Mg alloys[J]. Chin. J. Nonferrous Met., 2014, 24(9): 2220
[11] (董凯辉, 孙硕, 宋影伟等. 镁合金新型氟钛酸盐电解液体系微弧氧化电参数的优化[J]. 中国有色金属学报, 2014, 24(9): 2220)
[12] Ivanou D K, Starykevich M, Lisenkov A D, et al.Plasma anodized ZE41 magnesium alloy sealed with hybrid epoxy-silane coating[J]. Corros. Sci., 2013, 73: 300
[13] Li Z, Jing X, Yuan Y, et al.Composite coatings on a Mg-Li alloy prepared by combined plasma electrolytic oxidation and sol-gel techniques[J]. Corros. Sci., 2012, 63: 358
[14] Cui X J, Lin X Z, Liu C H, et al.Fabrication and corrosion resistance of a hydrophobic micro-arc oxidation coating on AZ31 Mg alloy[J]. Corros. Sci., 2015, 90: 402
[15] Gao Z Y, Pan F S, Tang A T, et al.Investigation on corrosion and wear resistance of AZ31 magnesium alloy by single layer nanocrystalline Al2O3 thin film[J]. J. Funct. Mater., 2013, 8(44): 1
[15] (高正源, 潘复生, 汤爱涛等. AZ31镁合金表面纳米Al2O3涂层的耐蚀耐磨性能研究[J]. 功能材料, 2013, 8(44): 1)
[16] Tao Y S, Xiong T Y, Sun C, et al.Effect of α-Al2O3 on the properties of cold sprayed Al/α-Al2O3 composite coatings on AZ91D ma- gnesium alloy[J]. Appl. Surf. Sci., 2009, 256: 261
[17] Luo H H, Cai Q Z, He J, et al.Preparation and properties of composite ceramic coating containing Al2O3-ZrO2-Y2O3 on AZ91D magnesium alloy by plasma electrolytic oxidation[J]. Curr. Appl. Phys., 2009, 9: 1341
[18] Liu P, Pan X, Yang W H, et al.Al2O3-ZrO2 ceramic coatings fabricated on WE43 magnesium alloy by cathodic plasma electrolytic deposition[J]. Mater. Lett., 2012, 70: 16
[19] Zhang D F, Gou Y N, Liu Y P, et al.A composite anodizing coating containing superfine Al2O3 particles on AZ31 magnesium alloy[J]. Surf. Coat. Technol., 2013, 236: 52
[20] Mandelli A, Bestetti M, Da Forno A, et al.A composite coating for corrosion protection of AM60B magnesium alloy[J]. Surf. Coat. Technol., 2011, 205: 4459
[21] Liu Y P, Duan L H, Ma S X, et al.Influence of additions of powerders in electrytical solution on microstructure and corrosion protection of ceramic coatings formed on magnesium alloy during micro-arc oxidation[J]. J. Chin. Soc. Corros. Prot., 2007, 27(4): 202
[21] (刘亚萍, 段良辉, 马淑仙等. 粉末对镁合金微弧氧化陶瓷膜的显微结构及其耐蚀性的影响[J]. 中国腐蚀与防护学报, 2007, 27(4): 202)
[22] Qu L J, Li M Q, Liu M, et al.In vitro degradation of medical magnesium alloy coated by ultrasonic micro-arc oxidation[J]. Rare Met. Mat. Eng., 2014, 43(S1): 96
[22] (曲立杰, 李慕勤, 刘苗等. 超声-微弧氧化医用镁合金体外降解性研究[J]. 稀有金属材料与工程, 2014, 43(S1): 96)
[23] Liu Y P, Li T T, Li J, et al.Growth dynamics process of anodic film formed on magnesium alloy[J]. Rare Met. Mat. Eng., 2014, 43(4): 1013
[23] (刘渝萍, 李婷婷, 李晶等. 镁合金阳极氧化膜的生长动力学过程[J]. 稀有金属材料与工程, 2014, 43(4): 1013)
[24] Yagi S, Sengoku A, Kubota K, et al.Surface modification of ACM522 magnesium alloy by plasma electrolytic oxidation in phosphate electrolyte[J]. Corros. Sci., 2012, 57: 74
[25] Li J, Zhang H C, Gao Y Z.Preparation and micro-tribological behavior of hydrophobic/superhydrophobic surface on magnesium alloy[J]. J. Funct. Mater., 2012, 43(22): 3063
[25] (李杰, 张会臣, 高玉周. MB8镁合金疏水/超疏水表面制备与微摩擦特性研究[J]. 功能材料, 2012, 43(22): 3063)
[26] Shanthi M, Lim C Y H, Lu L. Effects of grain size on the wear of recycled AZ91 Mg[J]. Tribol. Int., 2007, 40(2): 335
[1] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[2] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[3] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[4] BAO Ren, ZHOU Genshu, LI Hongwei. Preparation of High-tin Bronze Corrosion-resistant Coating by Potentiostatic Pulse Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[5] YUE Liangliang, MA Baoji. Effect of Ultrasonic Surface Rolling Process on Corrosion Behavior of AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[6] LIU Haixia, HUANG Feng, YUAN Wei, HU Qian, LIU Jing. Corrosion Behavior of 690 MPa Grade High Strength Bainite Steel in a Simulated Rural Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[7] LI Congwei, DU Shuangming, ZENG Zhilin, LIU Eryong, WANG Feihu, MA Fuliang. Effect of Current Density on Microstructure, Wear and Corrosion Resistance of Electrodeposited Ni-Co-B Coating[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[8] JIA Yizheng, WANG Baojie, ZHAO Mingjun, XU Daokui. Effect of Solid Solution Treatment on Corrosion and Hydrogen Evolution Behavior of an As-extruded Mg-Zn-Y-Nd Alloy in an Artificial Body Fluid[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.
[9] CAO Jingyi, FANG Zhigang, CHEN Jinhui, CHEN Zhixiong, YIN Wenchang, YANG Yange, ZHANG Wei. Preparation and Properties of Micro-arc Oxide Film with Single Dense Layer on Surface of 5083 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[10] ZHANG Yao, GUO Chen, LIU Yanhui, HAO Meijuan, CHENG Shiming, CHENG Weili. Electrochemical Corrosion Behavior of Extruded Dilute Mg-2Sn-1Al-1Zn Alloy in Simulated Body Fluid[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.
[11] WANG Le,YI Danqing,LIU Huiqun,JIANG Long,FENG Chun. Effect of Ru on Corrosion Behavior of Ti-6Al-4V Alloy and Its Mechanism[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[12] SHI Chao,SHAO Yawei,XIONG Yi,LIU Guangming,YU Yuelong,YANG Zhiguang,XU Chuanqin. Influence of Silane Coupling Agent Modified Zinc Phosphate on Anticorrosion Property of Epoxy Coating[J]. 中国腐蚀与防护学报, 2020, 40(1): 38-44.
[13] WU Dongcai,HAN Peide. Effects of Moderate Temperature Aging Treatment on Corrosion Resistance of SAF2304 DuplexStainless Steel[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[14] YANG Yinchu,FU Xiuqing,LIU Lin,MA Wenke,SHEN Moqi. Electrochemical Corrosion of Ni-P-BN(h)-Al2O3 Composite Coating Deposited by Spray Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(1): 57-62.
[15] JIANG Dongxue,FU Ying,ZHANG Junwei,ZHANG Wei,XIN Li,ZHU Shenglong,WANG Fuhui. Preparation and Properties of Alumina Ceramic Film on Ti-alloy Surface[J]. 中国腐蚀与防护学报, 2019, 39(6): 469-476.
No Suggested Reading articles found!