Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2016, Vol. 36 Issue (1): 47-51    DOI: 10.11902/1005.4537.2015.018
Orginal Article Current Issue | Archive | Adv Search |
Characterization of Corrosion Products on Pure Al Exposed in Atmospheres at Typical Rural, Industrial and Coastal Areas in China
Yanjie LIU,Zhenyao WANG(),Wei KE
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Download:  HTML  PDF(2653KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Pure Al plates were exposed in different atmospheres for 12 months at three typical test sites respectively: i.e. a rural site at Xishuangbanna of Yunnan province, an industrial site at Jiangjin of Sichuan province and a coastal site at Wanning of Hainan province. Then the corroded Al plates were characterized by means of EIS technique and SEM. The results indicate that the corrosion resistance of pure Al is the worst in the coastal atmosphere, the best in the rural atmosphere and the middle in the industrial atmosphere. Different thick layers of corrosion products were formed on Al surface in the rural and industrial atmosphere. In the contrast, a few corrosion products were formed dispersedly in the coastal atmosphere. The rate controlling step may be the diffusion of corrosive ions for the corrosion process in the coastal atmosphere, while the charge transfer for those in the rural and industrial atmospheres.

Key words:  atmospheric corrosion      Al      EIS      corrosion product     

Cite this article: 

Yanjie LIU,Zhenyao WANG,Wei KE. Characterization of Corrosion Products on Pure Al Exposed in Atmospheres at Typical Rural, Industrial and Coastal Areas in China. Journal of Chinese Society for Corrosion and protection, 2016, 36(1): 47-51.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2015.018     OR     https://www.jcscp.org/EN/Y2016/V36/I1/47

Atmosphere Mean temp.
Mean rel. hum.
%
Total sunshine
time / h
Total rain
time / h
Cl-
mg / 100 (cm2d)
SO2
mg / 100 (cm2d)
pH of rain
Coastal
(Wanning)
25.1 85 1832.5 391.71 0.5039 0.0559 5.34
Rural
(Xishuang banna)
22.2 79 1909.1 111.44 0.0045 0.0212 6.4
Industrial
(Jiangjin)
18.5 80 650 504.8 0.0036 0.8238 5.12
Table 1  Main environmental parameters of the exposure sites
Fig.1  SEM surface morphologies of the corrosion products formed on Al in rural (a), industrial (b) and coastal (c) atmospheres for 12 months
Fig.2  SEM cross-section morphologies of the corrosion products formed on Al in rural (a), industrial (b) and coastal (c) atmospheres for 12 months
Fig.3  Pits morphologies of Al exposed in rural (a), industrial (b) and coastal (c) atmospheres for 12 months
Atmosphere Rct / kΩcm2 Rr1 / kΩcm2 Rr2 / kΩcm2
Rural 5.08×103 5.63 ---
Industrial 3.83×103 0.115 389
Coastal 0.247 0.406 2.10×103
Table 2  Values of Rct, Rr1 and Rr2 of Al exposed in different atmospheres
Fig.4  Bode plots of Al exposed in the rural, industrial and coastal atmospheres for 12 months: (a) phase of Z vs frequency, (b) Z vs frequency
Fig.5  Equivalent circuits for Al samples un-exposed (a), exposed in the rural atmosphere for 12 months (b) and exposed in the industrial and coastal atmospheres for 12 months (c)
[1] Wang B B, Wang Z Y, Han W.Atmospheric corrosion of aluminium alloy 2024-T3 exposed to salt lake environment in western China[J].Corros. Sci., 2012, 59: 63
[2] Wang Z Y, Yu G C, Han W.Atmospheric corrosion law of three non-ferrous metals in Shenyang area[J]. Chin. J. Nonferrous Met., 2003, 13(2): 372
[2] (王振尧, 于国才, 韩薇. 3种有色金属在沈阳地区的大气腐蚀规律[J]. 中国有色金属学报, 2003, 13(2): 372)
[3] Sun S Q, Zeng Q F, Li D F.Long-term atmospheric corrosion behavior of LY12 aluminum alloy[J]. J. Chin. Soc. Corros. Prot., 2009, 29(6): 442
[3] (孙霜青, 郑弃非, 李德富. LY12铝合金的长期大气腐蚀行为[J]. 中国腐蚀与防护学报, 2009, 29(6): 442)
[4] Sun S Q, Zeng Q F, Li D F.Long-term atmospheric corrosion behaviour of aluminium alloys 2024 and 7075 in urban, coastal and industrial environments[J]. Corros. Sci., 2009, 51(4): 719
[5] Sun S Q, Zeng Q F, Li D F.Exfoliation corrosion of extruded 2024-T4 in the coastal environments in China[J]. Corros. Sci., 2011, 53(8): 2527
[6] Sun S Q, Zeng Q F, Wen J G.Atmospheric corrosion of aluminium in the northern Taklamakan desert environment[J]. Mater. Corros., 2010, 61(10): 852
[7] Li T, Li X G, Dong C F.Characterization of atmospheric corrosion of 2A12 aluminum alloy in tropical marine environment[J]. J. Mater. Eng. Perform., 2010, 19(4): 591
[8] Vilchf J R, Varela F E, Acuna G.A survey of Argentinean atmospheric corrosion I--Aluminium and zinc samples[J]. Corros. Sci., 1995, 37(6): 941
[9] Vera R, Delgado D, Rosales B M.Effect of atmospheric pollutants on the corrosion of high power electrical conductors: Part 1. Aluminium and AA6201 alloy[J]. Corros. Sci., 2006, 48(10): 2882
[10] Dan Z, Takigawa S, Muto I.Applicability of constant dew point corrosion tests for evaluating atmospheric corrosion of aluminium alloys[J]. Corros. Sci., 2011, 53(5): 2006
[11] Natesan M, Venkatachari G, Palaniswamy N.Kinetics of atmospheric corrosion of mild steel, zinc, galvanized iron and aluminium at 10 exposure stations in India[J]. Corros. Sci., 2006, 48(11): 3584
[12] GB/T 16545-1996. Corrosion of metals and alloys-romoval of corrosion products from corrosion test specimens[S]
[12] (GB/T 16545-1996. 金属和合金的腐蚀腐蚀试样上腐蚀产物的清除[S])
[13] Vargel C.Corrosion of Aluminium[M]. Amsterdam: Elsevier, 2004
[14] Chung S C, Sung S L, Hsien C C.Application of EIS to the initial stages of atmospheric zinc corrosion[J]. J. Appl. Electrochem. 2000, 30: 607
[15] de la Fuente D, Otero-Huerta E, Morcillo M. Studies of long-term weathering of aluminium in the atmosphere[J]. Corros. Sci., 2007,49(7): 3134
[16] Yan M C, Vetter C A, Gelling V J.Corrosion inhibition performance of polypyrrole Al flake composite coatings for Al alloys[J]. Corros. Sci., 2013, 70: 37
[17] Liu C, Bi Q, Matthews A.EIS comparison on corrosion performance of PVD TiN and CrN coated mild steel in 0.5 N NaCl aqueous solution[J]. Corros. Sci., 2001, 43: 1953.
[18] Hsu C H, Mansfeld F.Concerning the conversion of the constant phase element parameter Y0 into a capacitance[J]. Corrosion, 2001, 57: 2
[19] Cao C N.Principles of Electrochemistry of Corrosion [M]. Beijing: Beijing Idustrial Press, 2008: 184
[19] (曹楚南. 腐蚀电化学原理 [M]. 北京: 北京工业出版社, 2008: 184)
[1] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] DAI Ting, GU Yanhong, GAO Hui, LIU Kailong, XIE Xiaohui, JIAO Xiangdong. Electrochemical Performance of Underwater Friction Stud Welding Joint in CO2 Saturated NaCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 87-95.
[3] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[4] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[5] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[6] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[7] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[8] REN Yan, QIAN Yuhai, ZHANG Xintao, XU Jingjun, ZUO Jun, LI Meishuan. Effect of Thermal Shock on Mechanical Properties of Siliconized Graphite with ZrB2-SiC-La2O3/SiC Coating[J]. 中国腐蚀与防护学报, 2021, 41(1): 29-35.
[9] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[10] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[11] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[12] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[13] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[14] SUN Haijing, QIN Ming, LI Lin. Performance of Al-Zn-In-Mg-Ti Sacrificial Anode in Simulated Low Dissolved Oxygen Deep Water Environment[J]. 中国腐蚀与防护学报, 2020, 40(6): 508-516.
[15] ZHAO Pengxiong, WU Wei, DAN Yong. Application of Spatial-resolution Technology for In-situ Monitoring of Metal Corrosion[J]. 中国腐蚀与防护学报, 2020, 40(6): 495-507.
No Suggested Reading articles found!