|
|
Application of Spatial-resolution Technology for In-situ Monitoring of Metal Corrosion |
ZHAO Pengxiong, WU Wei, DAN Yong( ) |
School of Chemical Engineering, Northwest University, Xi'an 710069, China |
|
|
Abstract Corrosion is one of the main causes of metal material failure. In corrosion research, it is difficult to obtain accurate information on the corrosion evolution. The development of spatial-resolution technology enables the in-situ observation of metal corrosion processes to be realized. By combining the spatial-resolution technology and electrochemical techniques, more microscopic metal corrosion information can be obtained, which facilitates more accurate acquisition of corrosion information and provides reliable support for the illustration of corrosion mechanism. This paper reviews several classical spatial-resolution techniques in the field of corrosion in terms their working principle, advantages and disadvantages etc. The industrial CCD camera, digital holographic surface imaging technology, X-ray computed tomography, optical microscope, scanning electron microscope, atomic force microscope and transmission electron microscope are introduced. The application status and development prospects of each technology in the field of in-situ monitoring of metal corrosion are discussed. Finally, these spatial-resolution techniques are compared and corresponding recommendations for use are proposed in the review.
|
Received: 11 August 2019
|
|
Fund: National Natural Science Foundation of China(21576224);National Natural Science Foundation of China(51605368);Natural Science Basic;Research Plan in Shaanxi Province of China(2020JM-436) |
Corresponding Authors:
DAN Yong
E-mail: danyong@nwu.edu.cn
|
[1] |
Wang Q H, Gong T. Analysis of Fukushima nuclear power accident and its revelation [J]. Southern Power Syst. Technol., 2011, 5(3): 17
|
|
(王庆红, 龚婷. 福岛核电事故分析及其启示 [J]. 南方电网技术, 2011, 5(3): 17)
|
[2] |
Wang H H, Liu G H. Statistics and analysis of subsea pipeline accidents of CNOOC [J]. China Offshore Oil Gas, 2017, 29(5): 157
|
|
(王红红, 刘国恒. 中国海油海底管道事故统计及分析 [J]. 中国海上油气, 2017, 29(5): 157)
|
[3] |
Zhou H M, Tang L S. Leakage accident analysis of first absorption column in melamine unit [J]. China Chem. Ind. Equip., 2018, 20(3): 21
|
|
(周海明, 唐联生. 三聚氰胺装置一吸塔泄漏事故分析 [J]. 中国化工装备, 2018, 20(3): 21)
|
[4] |
Zhou W, Tong L H, Xia S, et al. Cause analysis of explosive and flammable accident occurred in pipeline for cyclohexane oxidation [J]. Process Equip. Piping, 2018, 55(3): 69
|
|
(周文, 童良怀, 夏尚等. 环己烷氧化管道爆燃事故原因技术分析 [J]. 化工设备与管道, 2018, 55(3): 69)
|
[5] |
Chen F Q, Fu D M, Zhou K, et al. Development and application of corrosion resistance probe monitoring technology [J]. Corros. Sci. Prot. Technol., 2017, 29: 669
|
|
(陈凤琴, 付冬梅, 周珂等. 电阻探针腐蚀监测技术的发展与应用 [J]. 腐蚀科学与防护技术, 2017, 29: 669)
|
[6] |
Xu Y Z, Huang Y, Wang X N, et al. Experimental study on pipeline internal corrosion based on a new kind of electrical resistance sensor [J]. Sens. Actuat., 2016, 224B: 37
|
[7] |
Yang D, Chen J S, Han Q, et al. Preparation of hot-dip Zn-Al-Mg alloy coating on steel wire and its electrochemical corrosion behavior [J]. Mater. Prot., 2008, 41(11): 1
|
|
(杨栋, 陈建设, 韩庆等. 钢丝热镀Zn-Al-Mg合金层及其电化学腐蚀行为 [J]. 材料保护, 2008, 41(11): 1)
|
[8] |
Zhao H L, Su X D, Qin Q D. Microstructure and corrosion behavior of friction stir welding seam of 6063 aluminum alloy [J]. Spec. Cast. Nonferrous Alloys, 2018, 38: 1140
|
|
(赵宏龙, 苏向东, 秦庆东. 6063铝合金搅拌摩擦焊焊缝组织特征与腐蚀行为研究 [J]. 特种铸造及有色合金, 2018, 38: 1140)
|
[9] |
Song S Z, Yin L H, Wu J, et al. Corrosion electrochemistry of brass tube in simulated circlating cooling system [J]. J. Chem. Ind. Eng. (China), 2005, 25: 121
|
|
(宋诗哲, 尹立辉, 武杰等. 模拟循环冷却系统黄铜管的腐蚀电化学 [J]. 化工学报, 2005, 25: 121)
|
[10] |
Ikeuba A I, Zhang B, Wang J Q, et al. SVET and SIET study of galvanic corrosion of Al/MgZn2 in aqueous solutions at different pH [J]. J. Electrochem. Soc., 2018, 165: C180
|
[11] |
Xia F, Liao K X, Jing H. Effect of chloride ions on localized corrosion behaviors of scratch-defected coating in gas pipeline wall [J]. Mater. Prot., 2017, 50(9): 36
|
|
(夏凤, 廖柯熹, 景红. Cl-对天然气管道内涂层破损处局部腐蚀的影响 [J]. 材料保护, 2017, 50(9): 36)
|
[12] |
Feng H W, Singh A, Wu Y P, et al. SECM/SKP and SVET studies on mitigation of N80 steel corrosion by some polymers [J]. New J. Chem., 2018, 42: 11404
|
[13] |
Yang W H, Hu R G, Ye C Q, et al. Corrosion behaviors of 316 stainless steel weldment studied by array reference electrodes [J]. Electrochemistry, 2011, 17: 373
|
|
(杨旺火, 胡融刚, 叶陈清等. 阵列参比电极法研究316不锈钢焊缝腐蚀行为 [J]. 电化学, 2011, 17: 373)
|
[14] |
Liu J Q, Wu J Q. Development of machine vision system and its application [J]. Mechan. Eng. Automat., 2010, (1): 215
|
|
(刘金桥, 吴金强. 机器视觉系统发展及其应用 [J]. 机械工程与自动化, 2010, (1): 215)
|
[15] |
Kazuya Y. Translated by Chen R T, Peng M G. The Basis and Applications of CCD/CMOS Image Sensors [M]. Peking: Science Press, 2011: 3
|
|
(Kazuya著. 陈榕庭, 彭美桂译. CCD/CMOS图像传感器基础与应用 [M]. 北京: 科学出版社, 2011: 3)
|
[16] |
Zhang S H, Shibata T, Haruna T. Inhibition effect of metal cations to intergranular stress corrosion cracking of sensitized Type 304 stainless steel [J]. Corros. Sci., 2005, 47: 1049
|
[17] |
Kamaya M, Haruna T. Influence of local stress on initiation behavior of stress corrosion cracking for sensitized 304 stainless steel [J]. Corros. Sci., 2007, 49: 3303
|
[18] |
Kovac J, Alaux C, Marrow T J, et al. Correlations of electrochemical noise, acoustic emission and complementary monitoring techniques during intergranular stress-corrosion cracking of austenitic stainless steel [J]. Corros. Sci., 2010, 52: 2015
|
[19] |
Bolivar J, Frégonèse M, Réthoré J, et al. Evaluation of multiple stress corrosion crack interactions by in-situ digital image correlation [J]. Corros. Sci., 2017, 128: 120
|
[20] |
Wang M F, Li X G, Du N, et al. Direct evidence of initial pitting corrosion [J]. Electrochem. Commun., 2008, 10: 1000
|
[21] |
Poon T C, Liu J P. Introduction to Modern Digital Holography: with MATLAB [M]. Cambridge: Cambridge University Press, 2014: 118
|
[22] |
Takaki Y, Matsumoto Y, Nakajima T. Color image generation for screen-scanning holographic display [J]. Opt. Express, 2015, 23: 26986
pmid: 26480360
|
[23] |
Yuan B Y, Li Z H, Tong S, et al. In situ monitoring of pitting corrosion on stainless steel with digital holographic surface imaging [J]. J. Electrochem. Soc., 2019, 166: C3039
|
[24] |
Klages P E, Rotermund M K, Rotermund H H. Simultaneous holographic, ellipsometric, and optical imaging of pitting corrosion on SS 316LVM stainless steel [J]. Corros. Sci., 2012, 65: 128
doi: 10.1016/j.corsci.2012.08.023
|
[25] |
Asgari P, Pourvais Y, Abdollahi P, et al. Digital holographic microscopy as a new technique for quantitative measurement of microstructural corrosion in austenitic stainless steel [J]. Mater. Des., 2017, 125: 109
doi: 10.1016/j.matdes.2017.03.085
|
[26] |
Baruchel J, Buffiere J Y, Maire E, et al. X-ray Tomography in Material Science [M]. Paris: Hermes Science Publications, 2000
|
[27] |
Maire E, Withers P J. Quantitative X-ray tomography [J]. Int. Mater. Rev., 2014, 59: 1
|
[28] |
Lu Y, Chiu Y L, Jones I P. Three-dimensional analysis of the microstructure and bio-corrosion of Mg-Zn and Mg-Zn-Ca alloys [J]. Mater. Charact., 2016, 112: 113
|
[29] |
Bradley R S, Liu Y, Burnett T L, et al. Time‐lapse lab‐based X‐ray nano‐CT study of corrosion damage [J]. J. Microsc., 2017, 267: 98
doi: 10.1111/jmi.12551
pmid: 28419456
|
[30] |
Shi J J, Ming J, Zhang Y M, et al. Corrosion products and corrosion-induced cracks of low-alloy steel and low-carbon steel in concrete [J]. Cem. Concr. Compos., 2018, 88: 121
doi: 10.1016/j.cemconcomp.2018.02.002
|
[31] |
Almuaili F A, McDonald S A, Withers P J, et al. Application of a quasi in situ experimental approach to estimate 3-D pitting corrosion kinetics in stainless steel [J]. J. Electrochem. Soc., 2016, 163: C745
|
[32] |
Almuaili F A, McDonald S A, Withers P J, et al. Strain-induced reactivation of corrosion pits in austenitic stainless steel [J]. Corros. Sci., 2017, 125: 12
|
[33] |
Örnek C, Léonard F, McDonald S A, et al. Time-dependent in situ measurement of atmospheric corrosion rates of duplex stainless steel wires [J]. npj Mater. Degradat., 2018, 2: 10
|
[34] |
Sun Y Y. Optical Microscopic Analysis [M]. 2nd Ed. Beijing: Tsinghua University Press, 2003
|
|
(孙业英. 光学显微分析 [M]. 第2版. 北京: 清华大学出版社, 2003)
|
[35] |
Ambat R, Aung N N, Zhou W. Evaluation of microstructural effects on corrosion behaviour of AZ91D magnesium alloy [J]. Corros. Sci., 2000, 42: 1433
doi: 10.1016/S0010-938X(99)00143-2
|
[36] |
Wang Y F, Cheng G X, Li Y. Observation of the pitting corrosion and uniform corrosion for X80 steel in 3.5 wt.%NaCl solutions using in-situ and 3-D measuring microscope [J]. Corros. Sci., 2016, 111: 508
|
[37] |
Zhao Z J, Frankel G S. On the first breakdown in AA7075-T6 [J]. Corros. Sci., 2007, 49: 3064
doi: 10.1016/j.corsci.2007.02.001
|
[38] |
Green B A, Steward R V, Kim I, et al. Insitu observation of pitting corrosion of the Zr50Cu40Al10 bulk metallic glass [J]. Intermetallics, 2009, 17: 568
|
[39] |
Li Y. Novel electrochemical techniques with time/sPatial resolution for corrosion investigations-from instrumental methods to applications [D]. Xiamen: Xiamen University, 2009
|
|
(李彦. 金属腐蚀研究中具有时间—空间分辨的电化学技术-从仪器方法到实际应用 [D]. 厦门: 厦门大学, 2009)
|
[40] |
Xiao H Q. The design and experimental research on slow strain rate stress corrosion in-situ testing instrument [D]. Changchun: Jilin University, 2017
|
|
(肖慧琼. 慢应变速率应力腐蚀原位测试装置设计与试验研究 [D]. 长春: 吉林大学, 2017)
|
[41] |
Zhu Y, Wang Y P, Chen W X. Formation and Microscopic Analysis of SEM Images [M]. Beijing: Beijing University Press, 1991
|
|
(朱宜, 汪裕苹, 陈文雄. 扫描电镜图像的形成处理和显微分析 [M]. 北京: 北京大学出版社, 1991)
|
[42] |
Zhu L. SEM and its application in material science [J]. J. Jilin Instit. Chem. Technol., 2007, 24(2): 81
|
|
(朱琳. 扫描电子显微镜及其在材料科学中的应用 [J]. 吉林化工学院学报, 2007, 24(2): 81)
|
[43] |
Zou Y, Pan C X, Fu Q, et al. Insitu observations for corrosion process at fusion boundary of Cr5Mo dissimilar steel welded joints in H2S containing solution [J]. Acta Metall. Sin., 2005, 41: 421
|
|
(邹杨, 潘春旭, 傅强等. Cr5Mo异种钢焊接熔合区H2S腐蚀过程的“原位”观察 [J]. 金属学报, 2005, 41: 421)
|
[44] |
Li X D, Wang X S, Ren H H, et al. Effect of prior corrosion state on the fatigue small cracking behaviour of 6151-T6 aluminum alloy [J]. Corros. Sci., 2012, 55: 26
doi: 10.1016/j.corsci.2011.09.025
|
[45] |
Wang Y F, Cheng G G, Wu W, et al. Effect of pH and chloride on the micro-mechanism of pitting corrosion for high strength pipeline steel in aerated NaCl solutions [J]. Appl. Surf. Sci., 2015, 349: 746
doi: 10.1016/j.apsusc.2015.05.053
|
[46] |
Wang X S, Fan J H. SEM online investigation of fatigue crack initiation and propagation in cast magnesium alloy [J]. J. Mater. Sci., 2004, 39: 2617
|
[47] |
Li X D, Mu Z T, Liu Z G. SEM in situ study on pre-corrosion and fatigue cracking behavior of LY12CZ aluminum alloy [J]. Key Eng. Mater., 2013, 525/526: 81
|
[48] |
Liu Z. Research on stress corrosion behavior of 2A14 aluminum alloy welded joints [D]. Harbin: Harbin Institute of Technology, 2016
|
|
(刘震. 2A14铝合金焊接接头应力腐蚀行为研究 [D]. 哈尔滨: 哈尔滨工业大学, 2016)
|
[49] |
Binnig G, Quate C F, Gerber C. Atomic force microscope [J]. Phys. Rev. Lett., 1986, 56: 930
doi: 10.1103/PhysRevLett.56.930
pmid: 10033323
|
[50] |
Zhu J, Sun R G. Introduction to atomic force microscope and its manipulation [J]. Life Sci. Instrum., 2005, 3(1): 22
|
|
(朱杰, 孙润广. 原子力显微镜的基本原理及其方法学研究 [J]. 生命科学仪器, 2005, 3(1): 22)
|
[51] |
Liang S, Qiao L J, Chu W Y. AFM Study on stress corrosion promoting local plastic deformation [J]. Chin. Sci. Bull., 2002, 34(3): 178
|
|
(梁松, 乔利杰, 褚武扬. 应力腐蚀促进局部塑性变形的原子力显微镜研究 [J]. 科学通报, 2002, 34(3): 178)
|
[52] |
Qu J E, Guo X P, Wang H R, et al. Corrosion behavior of pure aluminum in FeCl3 solution [J]. Trans. Nonferrous Met. Soc. China, 2006, 16: 1460
|
[53] |
Izquierdo J, Eifert A, Souto R M, et al. Simultaneous pit generation and visualization of pit topography using combined atomic force-scanning electrochemical microscopy [J]. Electrochem. Commun., 2015, 51: 15
|
[54] |
Martin F A, Bataillon C, Cousty J. Insitu AFM detection of pit onset location on a 304L stainless steel [J]. Corros. Sci., 2008, 50: 84
doi: 10.1016/j.corsci.2007.06.023
|
[55] |
Shi Y Z, Collins L, Balke N, et al. In-situ electrochemical-AFM study of localized corrosion of AlxCoCrFeNi high-entropy alloys in chloride solution [J]. Appl. Surf. Sci., 2018, 439: 533
doi: 10.1016/j.apsusc.2018.01.047
|
[56] |
Lu L. The study of corrosion behavior of 35CrMo steel in CO2 saturated solution [D]. Chengdu: Southwest Petroleum University, 2011
|
|
(鲁亮. 35CrMo钢在CO2饱和溶液中的腐蚀行为研究 [D]. 成都: 西南石油大学, 2011)
|
[57] |
Payton O D, Picco L, Scott T B. High-speed atomic force microscopy for materials science [J]. Int. Mater. Rev., 2016, 61: 473
doi: 10.1080/09506608.2016.1156301
|
[58] |
Moore S, Burrows R, Picco L, et al. A study of dynamic nanoscale corrosion initiation events by HS-AFM [J]. Faraday Discuss., 2018, 210: 409
pmid: 29974088
|
[59] |
Reimer L. Transmission Electron Microscopy: Physics of Image Formation and Microanalysis [M]. Berlin: Springer Verlag, 2013, 36
|
[60] |
Wang Z L. New developments in transmission electron microscopy for nanotechnology [J]. Adv. Mater., 2003, 15: 1497
doi: 10.1002/(ISSN)1521-4095
|
[61] |
San X Y, Zhang B, Wu B, et al. Investigating the effect of Cu-rich phase on the corrosion behavior of Super 304H austenitic stainless steel by TEM [J]. Corros. Sci., 2018, 130: 143
doi: 10.1016/j.corsci.2017.11.001
|
[62] |
Wan Y, Tan J, Zhu S T, et al. Insight into atmospheric pitting corrosion of carbon steel via a dual-beam FIB/SEM system associated with high-resolution TEM [J]. Corros. Sci., 2019, 152: 226
doi: 10.1016/j.corsci.2019.03.017
|
[63] |
Song Z W, Xie Z H. A literature review of in situ transmission electron microscopy technique in corrosion studies [J]. Micron, 2018, 112: 69
pmid: 29929172
|
[64] |
Schilling S, Janssen A, Zaluzec N J, et al. Practical aspects of electrochemical corrosion measurements during in situ analytical transmission electron microscopy (TEM) of austenitic stainless steel in aqueous media [J]. Microsc. Microanal., 2017, 23: 741
doi: 10.1017/S1431927617012314
pmid: 28784199
|
[65] |
Zhang B, Ma X L. A review-pitting corrosion initiation investigated by TEM [J]. J. Mater. Sci. Technol., 2019, 35: 1455
doi: 10.1016/j.jmst.2019.01.013
|
[66] |
Zhang B, Wang J, Wu B, et al. Quasi-in-situ ex-polarized TEM observation on dissolution of MnS inclusions and metastable pitting of austenitic stainless steel [J]. Corros. Sci., 2015, 100: 295
doi: 10.1016/j.corsci.2015.08.009
|
[67] |
Zhang Y, Gore P, Rong W, et al. Quasi-in-situ STEM-EDS insight into the role of Ag in the corrosion behaviour of Mg-Gd-Zr alloys [J]. Corros. Sci., 2018, 136: 106
doi: 10.1016/j.corsci.2018.02.058
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|