Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2016, Vol. 36 Issue (1): 39-46    DOI: 10.11902/1005.4537.2015.010
Orginal Article Current Issue | Archive | Adv Search |
Atmospheric Corrosion of Carbon Steel and Weathering Steel in Three Environments
Chuan WANG(),Gongwang CAO,Chen PAN,Zhenyao WANG,Miaoran LIU
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Download:  HTML  PDF(4780KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Atmospheric corrosion of carbon steel Q235 and 45#, and weathering steel Corten A was studied in three typical atmospheres at tropic rainforest-, marine- and industrial-exposure sites respectively. Results show that the carbon steels and the weathering steel exhibited more or less the same corrosion kinetics, the formation of rusts and their evolution for exposure in one test site. But they were significant different from those for exposure in other test sites. Finally, the influence factors on corrosion process and the corrosivity of the three atmospheres were also discussed.

Key words:  carbon steel      weathering steel      atmospheric corrosion      conversion of rust      semipermeable membrane     

Cite this article: 

Chuan WANG,Gongwang CAO,Chen PAN,Zhenyao WANG,Miaoran LIU. Atmospheric Corrosion of Carbon Steel and Weathering Steel in Three Environments. Journal of Chinese Society for Corrosion and protection, 2016, 36(1): 39-46.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2015.010     OR     https://www.jcscp.org/EN/Y2016/V36/I1/39

Steel C Si Mn P S Cr Ni Cu Al Fe
Q235 0.14 0.01 0.33 0.011 0.02 --- --- --- --- Bal.
45# 0.42 0.28 0.58 0.011 0.015 0.04 0.02 0.02 --- Bal.
Corten A 0.09 0.3 0.35 0.081 0.005 0.48 0.27 0.28 0.037 Bal.
Table 1  Chemical compositions of Q235, 45# and Corten A steels (mass fraction / %)
Exposurestation Average temperature℃ / a AverageRH Average rainfallmm / a Average rainfall time (h / a) Average sunshine time (h / a)
Xishuangbanna (2010) 22.2 79 1281.6 111.44 1909.1
Wanning (2012) 25.1 85 1647.5 391.71 1832.5
Jiangjin (2012) 18.5 80 828.8 504.80 650.0
Table 2  Environmental conditions of the exposure test stations
Exposurestation NO2 SO2 H2S NH3 Cl- Rain
pH SO42- / mgm-3 Cl- / mgm-3
Xishuangbanna (2010) --- 0.0212 --- 0.0147 0.0045 6.40 --- ---
Wanning (2012) 0.0130 0.0559 0.0113 0.0105 0.5039 5.34 3908 4599
Jiangjin (2012) 0.0262 0.8238 0.0159 0.0746 0.0036 5.12 11158 2133
Table 3  Pollute factors of the exposure stations
Fig.1  Corrosion rates of carbon steels and weathering steelas a function of exposure time in Xishuangbanna (a), Jiangjin (b) and Wanning (c)
Exposure station Q235 45# CortenA Category carbon steel
Xishuangbanna 17.33 17.33 18.66 C2
Wanning 509.48 377.78 233.4 ?C5
Jiangjin 59.42 54.78 46.62 C4
Table 4  Corrosivity classification based on corrosionrates of three steels after 1 a exposure in different stations (μm/a)
Fig.2  Surface morphologies of Corten A after 1 a exposure in Xishuangbanna (a), Wanning (b) and Jiangjin (c) stations
Station O K Al K Si K Cl K Mn K S K Fe K
Xishuangbanna A 44.64 --- --- --- --- --- 55.36
B 59.34 2.08 3.97 --- --- --- 34.62
C 45.74 --- --- --- --- --- 54.26
Jiangjin A 43.12 0.65 0.87 --- --- 0.62 54.74
B 30.54 --- --- --- --- 0.65 68.81
C 39.31 0.86 1.43 --- --- 0.68 57.71
wanning A 45.74 0.56 --- 0.32 0.56 --- 52.82
B 50.00 1.36 1.66 0.34 --- --- 46.64
C 44.20 --- --- 0.37 --- --- 55.43
Table 5  Contents of some elements in the corrosion products on Corten A surface after 1 a exposure in three stations(mass fraction / %)
Exposure period O K Al K Si K Ca K Fe K
3 months Inner (A) 38.95 --- --- --- 61.05
Edge 51.94 2.41 2.46 4.10 39.09
Outer (B) 40.19 --- --- --- 59.81
12 months Inner (A) 45.74 --- --- --- 54.26
Edge 59.34 2.08 3.97 --- 34.62
Outer (B) 44.64 --- --- --- 55.36
Table 6  Contents of some elements in the corrosion products on Corten A surface in Xishuangbanna station(mass fraction / %)
Site Type of steel Corrosion product (FOM)
Xishuangbanna Q235 γ-FeOOH(9.3), γ-Fe2O3(30.1), α-FeOOH(32.1), Fe3O4(38.5)
Corten A γ-FeOOH(10.0), ɑ-FeOOH(21.1), γ-Fe2O3(40.4)
Wanning Q235 Fe3O4(29) ,γ-FeOOH(31.6), SiO2(40.9)
Corten A γ-FeOOH(20.3), Fe3O4(25.9), SiO2(30.6)
Jiangjin Q235 γ-FeOOH(7.5), α-FeOOH(36.5),(NH4)2Fe(SO3)2 H2O(40.2)
Corten A γ-FeOOH(7.5), (NH4)2Fe(SO3)2H2O(20.4), α-FeOOH(31)
Table 7  Corrosion products formed on three steels after 1 a exposure in three stations
Fig.3  Surface morphologies of Corten A after exposed in Xishuangbanna station for 3 months (a, b) and 12 months (c, d)
Fig.4  IR spectra of the corrosion products formed on Q235after 1 a exposure station in Xishuangbanna
Fig.5  Surface morphologies of Q235 (a) and Corten A (b) after 3 months exposure in Jiangjin station
[1] Evans U R.The Corrosion and Oxidation of Metals [M]. New York: St. Martin's Press, 1968: 197
[2] Lloyd B, Manning M I.The episodic nature of the atmospheric rusting of steel[J]. Corros. Sci., 1990, 30(1): 77
[3] Graedel T E, Frankenthal R P.Corrosion mechanisms for iron and low alloy steels exposed to the atmosphere[J]. J. Electrochem. Soc., 1990, 137(8): 2385
[4] Weissenrieder J, Leygraf C.In situ studies of filiform corrosion of iron[J]. J. Electrochem. Soc., 2004, 151: 165
[5] Chen X H, Dong J H, Han E H, et al.Effect of Ni on the ion-selectivity of rust layer on low alloy steel[J]. Mater. Lett., 2007, 61: 4050
[6] Benarie M, Lipfert F L.A general corrosion function in terms of atmospheric pollutant concentrations and rain pH[J]. Atmos. Environ., 1986, 20(10): 1947
[7] Misawa T, Kyuno T, Suetaka W, et al.The mechanism of atmospheric rusting and the effect of Cu and P on the rust formation of low alloy steels[J]. Corros. Sci., 1971, 11(1): 35
[8] Yamashita M, Miyuki H, Matsuda Y, et al.The long term growth of the protective rust layer formed on weathering steel by atmospheric corrosion during a quarter of a century[J]. Corros. Sci., 1994, 36(2): 283
[9] Misawa T, Asami K, Hashimoto K, et al.The mechanism of atmospheric rusting and the protective amorphous rust on low alloy steel[J]. Corros. Sci., 1974, 14(4): 279
[10] Marcus P, Oudar J.Corrosion Mechanism in Theory and Practice[M]. New York: Marcel Dekker Inc Press, 2002
[11] Oesch M F.The effect of SO2, NO2, NO and O-3 on the corrosion of unalloyed carbon steel and weathering steel-The results of laboratory exposures[J]. Corros. Sci., 1996, 38(8): 1357
[12] Wei F I.Atmospheric corrosion of carbon steels and weathering steels in Taiwan[J]. Br. Corros. J., 1991, 26: 209
[13] Ishikawa T, Maeda A, Kandori K, et al.Characterization of rust on Fe-Cr, Fe-Ni, and Fe-Cu binary alloys by Fourier transform infrared and N2 adsorption[J]. Corrosion, 2006, 62(7): 559
[14] Cole I S, Ganther W D, Sinclair J D, et al.A study of the wetting of metal surfaces in order to understand the processes controlling atmospheric corrosion[J]. J. Electrochem. Soc., 2004, 151(12): B627
[15] Raman A, Kuban B, Razvan A.The application of infrared spectroscopy to the study of atmospheric rust systems-I standard spectra and illustrative applications to identify rust phases in natural atmospheric corrosion products[J]. Corros. Sci., 1991, 32(12): 1295
[16] Nyquist R A, Kagel R O.Infrared Spectra of Inorganic Compounds [M]. New York and London: Academic Press, 1971
[17] Asami K, Kikuchi M.In-depth distribution of rusts on a plain carbon steel and weathering steels exposed to coastal-industrial atmosphere for 17 years[J]. Corros. Sci., 2003, 45: 2671
[18] Frankenthal R P, Milner P C, Siconolfi D J.Long-term atmospheric oxidation of high purity iron[J]. J. Electrochem. Soc., 1985, 132(5): 1019
[19] Natesan M, Venkatachari G, Palaniswamy N.Kinetics of atmospheric corrosion of mild steel, zinc, galvanized iron and aluminum at 10 exosure stations in India[J]. Corros. Sci., 2006, 48: 3584
[20] Weissenriederz J, Kleber C, Schreiner M, et al.In situ studies of sulfate nest formation on iron[J]. J. Electrochem. Soc., 2004, 151(9): B497
[21] Wang J H, Wei F I, Chang Y S, et al.The corrosion mechanisms of carbon steel and weathering steel in SO2 polluted atmospheres[J]. Mater. Chem. Phys., 1997, 47: 1
[22] Juan A J, Josefina I, Cecilio H.Analysis of short-term steel corrosion products formed in tropical marine environments of Panama[J]. Int. J. Corros., 2012, 54(4): 679
[1] ZHANG Chen, LU Yuan, ZHAO Jingmao. Synergistic Inhibition Effect of Imidazoline Ammonium Salt and Three Cationic Surfactants in H2S/CO2 Brine Solution[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[2] FAN Yi,CHEN Linheng,CAI Jiaxing,DAi Qinqin,MA Hongchi,CHENG Xuequn. Corrosion Behavior of Hot-rolled AH36 Plate in Indoor Storage Environment[J]. 中国腐蚀与防护学报, 2020, 40(1): 10-16.
[3] PAN Chengcheng,MA Chao,XIA Dahai. Estimation for Relevance of Atmospheric Corrosion Initiation with Surface Texture of Several Metallic Materials by Electron Backscattering Diffraction[J]. 中国腐蚀与防护学报, 2019, 39(6): 495-503.
[4] ZHAO Jinbin,ZHAO Qiyue,CHEN Linheng,HUANG Yunhua,CHENG Xuequn,LI Xiaogang. Effect of Different Surface Treatments on Corrosion Behavior of 300M Steel in Qingdao Marine Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
[5] DENG Junhao,HU Jiezhen,DENG Peichang,WANG Gui,WU Jingquan,WANG Kun. Effect of Oxide Scales on Initial Corrosion Behavior of SPHC Hot Rolled Steel in Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(4): 331-337.
[6] Yongwei SUN,Yuping ZHONG,Lingshui WANG,Fangxiong FAN,Yatao CHEN. Corrosion Behavior of Low-alloy High Strength Steels in a Simulated Common SO2-containing Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[7] Ping XU,Shuo ZHANG,Shuai SI,Yajun ZHANG,Changzheng WANG. Corrosion Mechanism of Carbon Steel Induced by Protein and Polysaccharide-the Main Components of EPS[J]. 中国腐蚀与防护学报, 2019, 39(2): 176-184.
[8] Xiankang ZHONG,Junying HU. Corrosion Behavior of X65 Carbon Steel in CO2Containing Liquids with Constant pH and Ferrous Ion Concentration[J]. 中国腐蚀与防护学报, 2018, 38(6): 573-578.
[9] Li WANG, Chunyun GUO, Kui XIAO, Tuerxun·Silayiding, Chaofang DONG, Xiaogang LI. Corrosion Behavior of Carbon Steels Q235 and Q450 in Dry Hot Atmosphere at Turpan District for Four Years[J]. 中国腐蚀与防护学报, 2018, 38(5): 431-437.
[10] Yue QIAO, Zhiping ZHU, Lei YANG, Zhifeng LIU. Monitoring and Simulated Experiments of Oxidation-Reduction Potential of Boiler Feedwater at High Temperatures[J]. 中国腐蚀与防护学报, 2018, 38(5): 487-494.
[11] Wanjun PENG, Jiheng DING, Hao CHEN, Haibin YU. Corrosion Inhibition of Bio-based Inhibitor Furfuryl Glycidyl Ether[J]. 中国腐蚀与防护学报, 2018, 38(3): 303-308.
[12] Guofu OU, Lulu ZHAO, Kai WANG, Kuanxin WANG, Haozhe JIN. Dew-Point Corrosion Behavior of 10# Carbon Steel inHCl-H2O Environment[J]. 中国腐蚀与防护学报, 2018, 38(1): 33-38.
[13] Yue WANG, Zili LIU, Xiqin LIU, Shoudong ZHANG, Qinchao TIAN. Microstructure and Corrosion Resistance of Hot Rolled Cr/Ni Micro-alloying High Strength Weathering Steel[J]. 中国腐蚀与防护学报, 2018, 38(1): 39-46.
[14] Jie ZHANG, Xiuhua HU, Chuanbo ZHENG, Jizhou DUAN, Baorong HOU. Influence of Calcareous Deposit on Corrosion Behavior of Q235 Carbon Steel in Marine Microalgae Containing Medium[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.
[15] Jun WANG, Chao FENG, Bicao PENG, Yi XIE, Minghua ZHANG, Tangqing WU. Corrosion Behavior of Weld Joint of S450EW Steel in NaHSO3 Solution[J]. 中国腐蚀与防护学报, 2017, 37(6): 575-582.
No Suggested Reading articles found!