Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2015, Vol. 35 Issue (3): 233-238    DOI: 10.11902/1005.4537.2014.080
Current Issue | Archive | Adv Search |
Galvanic Corrosion Behavior of Two Stainless Steels in Simulated Muffler Environments
Qiang WEI,Moucheng LI(),Jianian SHEN
Institute of Materials, Shanghai University, Shanghai 200072, China
Download:  HTML  PDF(1963KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The cyclic method of hot air oxidation/immersion in condensates was adopted to simulate the internal service conditions of automotive mufflers. The galvanic corrosion between type 409 and 304 stainless steels was investigated during the condensates immersion by using electrochemical measurements. The results of coupling potential and current indicate that the galvanic corrosion effect is very weak between these two steels without suffered from hot air oxidation. This means that 304 stainless steel can hardly accelerate the corrosion of 409 stainless steel as they contact directly in the condensate solutions. During the cyclic tests, the two steels show relatively higher values for the coupling current in the low coupling potential cases. Hot air oxidation will enhance the galvanic corrosion tendency between the two steels. However, they show small coupling current densities after cyclic oxidation at 250 ℃, with weak galvanic corrosion effect between them. Whereas they display large coupling current densities (i.e. strong galvanic corrosion effect) with the occurrence of localized corrosion after cyclic oxidation at 400 ℃.

Key words:  automotive exhaust system      muffler      stainless steel      galvanic corrosion      condensate corrosion     

Cite this article: 

Qiang WEI,Moucheng LI,Jianian SHEN. Galvanic Corrosion Behavior of Two Stainless Steels in Simulated Muffler Environments. Journal of Chinese Society for Corrosion and protection, 2015, 35(3): 233-238.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2014.080     OR     https://www.jcscp.org/EN/Y2015/V35/I3/233

Steel Cr Ni Mn Si C P S N Cu Ti Fe
304 18.11 8.19 1.06 0.43 0.05 0.025 0.001 0.039 0.55 --- Bal.
409 11.46 0.09 0.54 0.45 0.007 0.025 0.002 --- 0.02 0.19 Bal.
Table 1  Chemical compositions of two stainless steels used in the experiments
Fig.1  Corrosion potential vs time curves for 409 and 304 steels in the condensate solution
Fig.2  Galvanic potential (Eg) and current density (Ig) vs time curves of 409 and 304 steels
Fig.3  Variations of corrosion potential of two steels with cyclic times of oxidation/immersion tests under 250 ℃ (a) and 400 ℃ (b) oxidation conditions
Fig.4  Galvanic potential Eg (a) and current density Ig (b) vs time curves of 409 and 304 steels after 250 ℃ oxidation-immersion test for different time
Fig.5  Eg (a) and Ig (b) vs time curves of 409 and 304 steels after 400 ℃ oxidation-immersion test for different time
Fig.6  Variations of galvanic potential and current density of two steels with cyclic times of the oxidation-immersion tests under 250 ℃ (a) and 400 ℃ (b) oxidation conditions
Fig.7  SEM morphologies of 409 steel after 30 cycles of oxidation-immersion test under different conditions: (a) 250 ℃-oxidation without coupling, (b) 250 ℃-oxidation with coupling, (c) 400 ℃-oxidation without coupling, (d) 400 ℃-oxidation with coupling
[1] Inoue Y, Kikuchi M. Present and future trends of stainless steel for automotive exhaust system[J]. Nippon Steel Tech. Rep., 2003, 88: 62
[2] Douthett J. Automotive exhaust system corrosion [A]. In: Cramer S D, Covino B S, eds. ASM Handbook Volume 13C, Corrosion: Environments and Industries [C]. Ohio: ASM International, 2006, 519
[3] Ruan W H, Wang S D, Li M C, et al. Corrosion behavior of 409 ferritic stainless steel in condensate solution of automotive mufflers[J]. Corros. Sci. Prot. Technol., 2012, 24(4): 301 (阮伟慧, 王士栋, 李谋成等. 409不锈钢在消声器冷凝液中的腐蚀行为[J]. 腐蚀科学与防护技术, 2012, 24(4): 301)
[4] Li M C, Wang S D, Ma R Y, et al. Effect of cyclic oxidation on electrochemical corrosion of type 409 stainless steel in the simulated muffler condensates[J]. J. Solid State Electrochem., 2012, 16: 3059
[5] Bi H Y, Li X, Wu Y. Development of ferritic stainless steel for low temperature parts in automotive exhaust systems[J]. Baosteel Technol., 2007, 4: 1 (毕洪运, 李鑫, 武勇.汽车尾气排放系统低温端用铁素体不锈钢开发[J]. 宝钢技术, 2007, 4: 1)
[6] Ujiro T, Kitazawa M, Togashi F. Corrosion of muffler materials in automotive exhaust gas condensates[J]. Mater. Perform., 1994, 33: 49
[7] Doche M L, Hihn J Y, Mandroyan A, et al. A novel accelerated corrosion test for exhaust systems by means of power ultrasound[J]. Corros. Sci., 2006, 48: 4080
[8] Lee S U, Ahn J C, Kim D H, et al. Influence of chloride and bromide anions on localized corrosion of 15%Cr ferritic stainless steel[J]. Mater. Sci. Eng., 2006, A434: 155
[9] Huttunen-Saarivirta E, Kuokkala V T, Pohjanne P. Thermally grown oxide films and corrosion performance of ferritic stainless steels under simulated exhaust gas condensate conditions[J]. Corros. Sci., 2014, 87: 344
[10] Wang S D, Han P H, Ma R Y, et al. Effect of urea on condensates corrosion of stainless steels in simulated automotive exhaust environments[J]. J. Chin. Soc. Corros. Prot., 2013, 33(1): 41 (王士栋, 韩沛洪, 马荣耀等. 尿素对模拟汽车废气环境中不锈钢冷凝液腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2013, 33(1): 41)
[11] Yasir M, Mori G, Wieser H, et al. Study of sensitization and different heating cycles on stainless steels used for automotive exhaust components[J]. Mater. Corros., 2013, 63(9): 763
[12] Chang S, Jun J H. Corrosion resistance of automotive exhaust materials[J]. J. Mater. Sci. Lett., 1999, 18: 419
[13] Kim J K, Kim Y H, Lee B H, et al. New findings on intergranular corrosion mechanism of stabilized stainless steels[J]. Electrochim. Acta, 2011, 56: 1701
[14] Han P H, Xu Z H, Wang C P, et al. Condensate corrosion behavior of type 409 stainless steel in simulated automotive muffler environments[J]. Int. J. Electrochem. Sci., 2014, 9: 3784
[15] Li M C, Zhang H, Huang R F, et al. Effect of SO2 on oxidation of type 409 stainless steel and its implication on condensate corrosion in automotive mufflers[J]. Corros. Sci., 2014, 80: 96
[1] LIU Xinyi, ZHAO Yazhou, ZHANG Huan, CHEN Li. Effect of Chloride Concentration in a Simulated Concrete Pore Solution on Metastable Pitting of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(2): 195-201.
[2] ZHANG Huiyun, ZHENG Liuwei, MENG Xianming, LIANG Wei. Effect of Electrochemical Hydrogen Charging on Hydrogen Embrittlement Sensitivity of Cr15 Ferritic and 304 Austenitic Stainless Steels[J]. 中国腐蚀与防护学报, 2021, 41(2): 202-208.
[3] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[4] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[5] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[6] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[7] MA Mingwei, ZHAO Zhihao, JING Siwen, YU Wenfeng, GU Yien, WANG Xu, WU Ming. Corrosion Behavior of 17-4 PH Stainless Steel in Simulated Seawater Containing SRB[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[8] DING Qingmiao, QIN Yongxiang, CUI Yanyu. Galvanic Corrosion of Aircraft Components in Atmospheric Environment[J]. 中国腐蚀与防护学报, 2020, 40(5): 455-462.
[9] ZHAO Baijie, FAN Yi, LI Zhenzhen, ZHANG Bowei, CHENG Xuequn. Crevice Corrosion Behavior of 316L Stainless Steel Paired with Four Different Materials[J]. 中国腐蚀与防护学报, 2020, 40(4): 332-341.
[10] YI Hongwei, HU Huihui, CHEN Changfeng, JIA Xiaolan, HU Lihua. Corrosion Behavior and Corrosion Inhibition of Dissimilar Metal Welds for X65 Steel in CO2-containing Environment[J]. 中国腐蚀与防护学报, 2020, 40(2): 96-104.
[11] HU Yuting, DONG Pengfei, JIANG Li, XIAO Kui, DONG Chaofang, WU Junsheng, LI Xiaogang. Corrosion Behavior of Riveted Joints of TC4 Ti-Alloy and 316L Stainless Steel in Simulated Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[12] QIN Yueqiang, ZUO Yong, SHEN Miao. Corrosion Inhibition of 316L Stainless Steel in FLiNaK-CrF3/CrF2 Redox Buffering Molten Salt System[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[13] BAI Miaomiao, BAI Ziheng, JIANG Li, ZHANG Dongjiu, YAO Qiong, WEI Dan, DONG Chaofang, XIAO Kui. Corrosion Behavior of H62 Brass Alloy/TC4 Titanium Alloy Welded Specimens[J]. 中国腐蚀与防护学报, 2020, 40(2): 159-166.
[14] HE Zhuang,WANG Xingping,LIU Zihan,SHENG Yaoquan,MI Mengxin,CHEN Lin,ZHANG Yan,LI Yuchun. Passivation and Pitting of 316L and HR-2 Stainless Steel in Hydrochloric Acid Liquid Membrane Environment[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
[15] WU Dongcai,HAN Peide. Effects of Moderate Temperature Aging Treatment on Corrosion Resistance of SAF2304 DuplexStainless Steel[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
No Suggested Reading articles found!