Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2014, Vol. 34 Issue (6): 558-565    DOI: 10.11902/1005.4537.2013.184
Current Issue | Archive | Adv Search |
Corrosion Resistance of Copper-bearing Duplex Stainless Steel in Culture Medium without and with Bacteria
WANG Yongxia, XIANG Hongliang, YANG Caiping, LIU Dong
School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350116, China
Download:  HTML  PDF(1962KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Effects of aging treatment at 540~580 ℃ on the corrosion resistance of a copper-bearing duplex stainless were studied by electrochemical measurement in culture medium with and without bacteria. The surface morphology of the biofilms and the corrosion products formed on the steels solution treated and aging treated at 560 ℃ were characterized by OM and XPS. The results show that in the culture medium without bacteria, but the proportion of coarse copper-rich phase in the corrosion products on the aged steel increases with the increasing aging temperature, correspondingly the corrosion resistance of the aged steels became worse; in comparison with those in the culture medium without bacteria, the corrosion resistance of the steels solution treated and aged at 540 ℃ is inferior, while of the steels aged at 560 and 580 ℃ is better in the culture medium with bacteria, correspondingly a thicker porous microbiological biofilm with low CuCO3 content formed on the steel solution treated in the culture medium with bacteria, which possessed less protectiveness, while a thin and dense biofilm with high CuCO3 content formed on the steel aged at 560 ℃, which could enhance the corrosion resistance of the steel.

Key words:  copper-bearing duplex stainless steel      aged temperature      copper-rich phase      microbiological biofilm     
ZTFLH:  TG172  

Cite this article: 

WANG Yongxia, XIANG Hongliang, YANG Caiping, LIU Dong. Corrosion Resistance of Copper-bearing Duplex Stainless Steel in Culture Medium without and with Bacteria. Journal of Chinese Society for Corrosion and protection, 2014, 34(6): 558-565.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2013.184     OR     https://www.jcscp.org/EN/Y2014/V34/I6/558

Fig.1  Polarization curves of samples in culture medium without (a) and with (b) bacteria
Sample Icorr / Acm-2 Eb (vs SCE) / V
Solution treatment without bacteria 1.083×10-7 0.254
Aging at 540 ℃ without bacteria 2.238×10-7 0.249
Aging at 560 ℃ without bacteria 2.413×10-6 0.752
Aging at 580 ℃ without bacteria 3.500×10-6 0.046
Solution treatment without bacteria 3.667×10-7 0.837
Aging at 540 ℃ without bacteria 3.705×10-6 0.596
Aging at 560 ℃ without bacteria 2.706×10-7 1.169
Aging at 580 ℃ without bacteria 3.433×10-6 1.125
Table 1  Test parameters of the potentiodynamic polarization curves
Fig.2  Nyquist plots and simulate curves of samples in culture medium without (a) and with (b) bacteria
Fig.3  Electrical equivalent circuit model of Nyquist plot in Fig.2
Sample RS / Ωcm2 Cf / Ssecncm-2 n1 Rf / Ωcm2 Cp / Ssecncm-2 n2 RP / Ωcm2
Solution treatment without bacteria 11.2400 3.252×10-5 0.879 9.969×106 1.760×10-4 0.860 176.93
Aging at 540 ℃ without bacteria 12.2300 3.952×10-5 0.849 5.332×106 2.087×10-4 0.844 115.60
Aging at 560 ℃ without bacteria 13.8500 1.126×10-3 0.859 2.831×104 9.371×10-3 0.849 52.38
Aging at 580 ℃ without bacteria 14.5700 5.854×10-2 0.893 2.132×103 3.331×10-2 0.906 9.45
Solution treatment with bacteria 0.8307 1.338×10-4 0.875 3.684×105 7.794×10-4 0.881 84.19
Aging at 540 ℃ with bacteria 0.7517 1.051×10-2 0.854 1.667×103 2.617×10-2 0.922 6.69
Aging at 560 ℃ with bacteria 0.6437 6.276×10-5 0.929 4.105×105 5.428×10-4 0.901 89.59
Aging at 580 ℃ with bacteria 0.7632 1.106×10-3 0.856 1.848×104 9.551×10-2 0.900 33.76
Table 2  Values of fit parameter of EIS in Rs(QfRf)(QpRp) equivalent circuits
Fig.4  TEM images of samples aged at 540 ℃ (a), 560 ℃ (b) and 580 ℃ (c)
Fig.5  OM images of samples treated by solid solution (a) and aging at 560 ℃ after immersion in culture medium with bacteria (b)
Sample pH
Original
pH
After 24 h
Bacteria count, cfu/mL Original Bacteria count, cfu/mL
After 24 h
Solution treatment without bacteria 7.4~7.6 7.4~7.6 --- ---
Aging at 540 ℃ without bacteria 7.4~7.6 7.4~7.6 --- ---
Aging at 560 ℃ without bacteria 7.4~7.6 7.4~7.6 --- ---
Aging at 580 ℃ without bacteria 7.4~7.6 7.4~7.6 --- ---
Solution treatment with bacteria 7.4~7.6 6.4~6.5 2.8×108 1.18×108
Aging at 540 ℃ with bacteria 7.4~7.6 6.4~6.6 2.8×108 0.70×108
Aging at 560 ℃ with bacteria 7.4~7.6 6.7~7.0 2.8×108 1.12×105
Aging at 580 ℃ with bacteria 7.4~7.6 6.7~6.8 2.8×108 1.29×107
Table 3  pH and bacteria content of culture medium
Fig.6  XPS patterns of Cu2p3/2 in the passive film of samples after immersion in culture medium with bacteria: (a) solution treatment, (b) aging at 560 ℃
Sample Sputtering time / s 932.6 eV
(Cu)
933.7 eV
(CuO)
934.8 eV
(CuCO3)
935.1 eV
(Cu(OH)2)
Solution treatment with bacteria 0 52.50 16.87 30.05 0.58
20 99.54 0.46 --- ---
30 92.64 --- --- 7.36
Aging at 560 ℃ with bacteria 0 --- 37.09 62.91 ---
20 89.71 10.29 --- ---
30 100 --- --- ---
Table 4  Binding energies and relative cotents of Cu2p3/2
[1] Cristóbal A B, Arenas M A, Conde A, et al. Corrosion of stainless steels covered by exopolymers[J]. Electrochim. Acta, 2006, 52(2): 546-551
[2] de Damborenea J J, Cristóbal A B, Arenas M A, et al. Selective dissolution of austenite in AISI 304 stainless steel by bacterial activity[J]. Mater. Lett., 2007, 61(3): 821-823
[3] Little B, Wagner P. Myths related to microbiologically influenced corrosion[J]. Mater. Perform., 1997, 36(6): 40-45
[4] Xiao W L, Chai K, Yang Y H, et al. Effect of microbe on the corrosion behaviors and mechanical properties of 25 carbon steel in tropical seawater condition[J]. J. Chin. Soc. Corros. Prot., 2010, 30(5): 359-363
(肖伟龙, 柴柯, 杨雨辉等. 25钢在热带海洋环境下海水中的微生物腐蚀及其对力学性能的影响[J]. 中国腐蚀与防护学报, 2010,30(5): 359-363)
[5] Xiang H L, Fan J C, Liu D, et al. Effects of antibacterial aging treatment on microstructure and properties of copper-containing duplex stainless steel II. Microstructure and evolution of copper-rich phase[J]. Acta Metall. Sin., 2012, 48(9): 1089-1096
(向红亮, 范金春, 刘东等. 抗菌时效处理对含Cu双相不锈钢组织和性能的影响II. 耐蚀及抗菌性能[J]. 金属学报, 2012, 48(9): 1089-1096)
[6] Xiang H L, Fan J C, Liu D, et al. Effects of antibacterial aging treatment on microstructure and properties of copper-containing duplex stainless steel I. Corrosion resistance and antibacterial properties[J]. Acta Metall. Sin., 2012, 48(9): 1081-1088
(向红亮, 范金春, 刘东等. 抗菌时效处理对含Cu双相不锈钢组织和性能的影响I. 富Cu相的微观结构及演变规律[J]. 金属学报, 2012, 48(9): 1081-1088)
[7] Nan L, Liu Y Q, Yang W C, et al. Study on antibacterial properties of copper-containing antibacterial stainless steels[J]. Acta Metall. Sin., 2007, 43(10): 1065-1070
(南黎, 刘永前, 杨伟超等. 含铜抗菌不锈钢的抗菌特性研究[J]. 金属学报, 2007, 43(10): 1065-1070)
[8] Qin L Y, Song S Z, Li Y H, et al. Microbial-corrosion resistance of the Cu-containing ferrite stainless steels after antibacterial treatment[J]. Acta Phys.-Chim. Sin., 2008, 24(5): 895-900
(秦丽雁, 宋诗哲, 李亚红等. 抗菌处理含铜铁素体不锈钢的耐微生物腐蚀性能[J]. 物理化学学报, 2008, 24(5): 895-900)
[9] Xu C M, Zhang Y H, Cheng G X, et al. Investigation of sulfate-reducing bacteria on pitting of 316L stainless steel in cooling water system for oil pefinery[J]. J. Chin. Soc. Corros. Prot., 2007, 27(1): 48-53
(胥聪敏, 张耀亨, 程光旭等. 炼油厂冷却水系统硫酸盐还原菌对316L不锈钢点腐蚀的研究[J]. 中国腐蚀与防护学报, 2007, 27(1): 48-53)
[10] Sourisseau T, Chauveau E, Baroux B. Mechanism of copper action on pitting phenomena observed on stainless steels in chloride media[J]. Corros. Sci., 2005, 47(5): 1097-1117
[11] Pardo A, Merino M C, Coy A E, et al. Corrosion behaviour of magnesium/aluminium alloys in 3.5 wt.% NaCl[J]. Corros. Sci., 2008, 50(3): 823-834
[12] Ujiroa T, Satoha S, Staehleb R W, et al. Effect of alloying Cu on the corrosion resistance of stainless steels in chloride media[J]. Corros. Sci., 2001, 43(11): 2185-2200
[1] . The environmental factors and ACM evaluation of the atmospheric environment corrosivity in Hunan[J]. 中国腐蚀与防护学报, 0, (): 0-0.
[2] QIAO Jisen, XIA Zonghui, LIU Libo, XU Jiamin, LIU Xudong. Corrosion Resistance of Aluminum-magnesium Bimetal Composite Material Prepared by Isothermal Indirect Extrusion[J]. 中国腐蚀与防护学报, 2021, 41(2): 255-262.
[3] ZHANG Teng, LIU Jing, HUANG Feng, HU Qian, GE Fangyu. Effect of Alternating Stress Frequency on Corrosion Electrochemical Behavior of E690 Steel in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(2): 226-232.
[4] LIU Xinyi, ZHAO Yazhou, ZHANG Huan, CHEN Li. Effect of Chloride Concentration in a Simulated Concrete Pore Solution on Metastable Pitting of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(2): 195-201.
[5] GE Fangyu, HUANG Feng, YUAN Wei, XIAO Hu, LIU Jing. Effect of Cyclic Stress Frequency on Corrosion Electrochem-ical Behavior of MS X65 Pipeline Steel in H2S Containing Medium[J]. 中国腐蚀与防护学报, 2021, 41(2): 187-194.
[6] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[7] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[8] LIU Yang, WU Jinyi, YAN Xiaoyu, CHAI Ke. Effect of Bacillus flexus on Degradation of Polyurethane Varnish Coating in Marine Environment[J]. 中国腐蚀与防护学报, 2021, 41(1): 36-42.
[9] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[10] ZHAO Pengxiong, WU Wei, DAN Yong. Application of Spatial-resolution Technology for In-situ Monitoring of Metal Corrosion[J]. 中国腐蚀与防护学报, 2020, 40(6): 495-507.
[11] JIA Shichao, GAO Jiaqi, GUO Hao, WANG Chao, CHEN Yangyang, LI Qi, TIAN Yimei. Influence of Water Quality on Corrosion of Cast Iron Pipe in Reclaimed Water[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[12] YU Haoran, ZHANG Wenli, CUI Zhongyu. Difference in Corrosion Behavior of Four Mg-alloys in Cl--NH4+-NO3- Containing Solution[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[13] MA Mingwei, ZHAO Zhihao, JING Siwen, YU Wenfeng, GU Yien, WANG Xu, WU Ming. Corrosion Behavior of 17-4 PH Stainless Steel in Simulated Seawater Containing SRB[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[14] LI Congwei, DU Shuangming, ZENG Zhilin, LIU Eryong, WANG Feihu, MA Fuliang. Effect of Current Density on Microstructure, Wear and Corrosion Resistance of Electrodeposited Ni-Co-B Coating[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[15] WANG Yu, WU Jiajia, ZHANG Dun. Research Progress on Corrosion of Metal Materials Caused by Dissimilatory Iron-reducing Bacteria in Seawater[J]. 中国腐蚀与防护学报, 2020, 40(5): 389-397.
No Suggested Reading articles found!