Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2014, Vol. 34 Issue (6): 495-501    DOI: 10.11902/1005.4537.2013.233
Current Issue | Archive | Adv Search |
Effect of Electrical Parameters on Micromorphology and Corrosion Resistance of Micro-arc Oxidation Coating on AZ31B Mg Alloy
CUI Xuejun1,2(), WANG Rong2, WEI Jinsong2, BAI Chengbo2, LIN Xiuzhou1,2
1. Material Corrosion and Protection Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering, Zigong 643000, China
2. College of Materials and Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
Download:  HTML  PDF(4261KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A micro-arc oxidation coating containing uniformly distributed fine pores was obtained on AZ31B Mg alloy in a glycerol containing silicate aqueous solution. The effect of electrical parameters, such as voltage, frequency and duty cycle on the micromorphology, corrosion resistance and thickness of the micro-arc oxidation (MAO) coating was investigated by means of scanning electron microscope (SEM), electrochemical workstation and thickness gauge. The results show that the size of micro-pores and the thickness of MAO coating increase accordingly with the increasing voltage, while the corrosion resistance first increases and then decreases. However, the diameter of micros-pores decreases with the increasing frequency while corrosion resistance increases; the frequency has a weak effect on the thickness of the coating; when the duty cycle is larger than 45%, the size of micro-pores and thickness are apt to increase while the corrosion resistance decreases due to the breakdown and damage of MAO coating. The optimal electrical parameters for obtaining an excellent MAO coating are voltage 230~260 V, frequency 300~500 Hz and duty cycle 30%~45%.

Key words:  magnesium alloy      micro-arc oxidation      electrical parameter      corrosion resistance     
ZTFLH:  TG174  

Cite this article: 

CUI Xuejun, WANG Rong, WEI Jinsong, BAI Chengbo, LIN Xiuzhou. Effect of Electrical Parameters on Micromorphology and Corrosion Resistance of Micro-arc Oxidation Coating on AZ31B Mg Alloy. Journal of Chinese Society for Corrosion and protection, 2014, 34(6): 495-501.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2013.233     OR     https://www.jcscp.org/EN/Y2014/V34/I6/495

Fig.1  Surface micromorphologies of MAO coatings obtained via varying voltage on AZ31B Mg alloy: (a) 200 V, (b) 230 V, (c) 260 V, (d) 290 V, (e) 320 V
Fig.2  Change of thickness of MAO coatings as a function of voltage
Fig.3  Polarization curves of MAO coatings obtained via varying voltage on AZ31B Mg alloy in 3.5%NaCl solution
Voltage / V -Ecorr / mV icorr / μAcm-2 Rp / kΩcm2
200 1494 2.577 12.219
230 1382 0.3450 92.319
260 1475 0.3194 114.902
290 1444 0.4123 87.586
320 1437 1.241 22.897
  
Fig.4  Surface micromorphologies of MAO coatings obtained via varying frequency on AZ31B Mg alloy: (a) 100 Hz, (b) 200 Hz, (c) 300 Hz, (d) 400 Hz, (e) 500 Hz
Frequency / Hz -Ecorr / mV icorr / μAcm-2 Rp / kΩcm2
100 1444 2.227 19.964
200 1489 0.7221 18.808
300 1475 0.3194 114.902
400 1415 0.2937 40.897
500 1490 0.3883 31.562
  
Fig.5  Change of thickness of MAO coatings as a function of frequency
Fig.6  Polarization curves of MAO coatings formed on AZ31B Mg alloy under different frequency in 3.5%NaCl solution
Fig.7  Surface micromorphologies of MAO coatings obtained via varying duty cycle on AZ31B Mg alloy: (a) 15%, (b) 30%, (c) 45%, (d) 60%, (e) 75%
Fig.8  Change of thickness of MAO coatings as a function of duty cycle
Fig.9  Polarization curves of MAO coatings obtained via varying duty cycle on AZ31B Mg alloy in 3.5%NaCl solution
Duty cycle -Ecorr / mV icorr / μAcm-2 Rp / kΩcm2
15% 1514 1.1110 18.045
30% 1474 0.3194 114.902
45% 1530 0.3365 26.552
60% 1419 0.5898 12.462
75% 1506 0.9311 6.062
  
[1] Song G L. Recent progress in corrosion and protection of magnesium alloys[J]. Adv. Eng. Mater., 2005, 7(7): 563-586
[2] Hu R G, Zhang S, Bu J F, et al. Recent progress in corrosion protection of magnesium alloys by organic coatings[J]. Prog. Org. Coat., 2012, 73: 129-141
[3] Kang H J, Li Q A, Zhou W. Prospect of anodization on magnesium alloys[J]. Corros. Sci. Prot. Technol., 2012, 24(6): 513-516
(亢海娟, 李全安, 周伟. 镁合金的腐蚀特性与防护措施[J]. 腐蚀科学与防护技术, 2012, 24(6): 513-516)
[4] Wang M J, Wang R C, Peng C Q, et al. Corrosion characteristic and corrosion prevention technology of magnesium alloy[J]. Corros. Sci. Prot. Technol., 2012, 24(6): 508-512
(王美娟, 王日初, 彭超群等. 镁合金阳极氧化研究进展[J]. 腐蚀科学与防护技术, 2012, 24(6): 508-512)
[5] Guo Q Z, Zhang W, Du K Q, et al. Effect of negative potential on compactness of plasma electrolyte oxidation coatings on magnesium alloy AZ31B by electrochemical impedance spectrum[J]. J. Chin. Soc. Corros. Prot., 2012, 32(6): 467-472
(郭泉忠, 张伟, 杜克勤等. 电化学阻抗谱研究负向电压对AZ31B镁合金微弧氧化陶瓷层致密性的影响[J]. 中国腐蚀与防护学报, 2012, 32(6): 467-472)
[6] Hwang I J, Hwang D Y, Ko Y G, et al. Correlation between current frequency and electrochemical properties of Mg alloy coated by micro arc oxidation[J]. Surf. Coat. Technol., 2012, 206: 3360-3365
[7] Chang L R, Cao F H, Cai J S, et al. Influence of electric parameters on MAO of AZ91D magnesium alloy using alternative square-wave power source[J]. Trans. Nonferrous Met. Soc. China, 2011, 21: 307-316
[8] Ma Y, Zhan H, Ma Y Z, et al. Effects of electrical parameters on microstructure and corrosion resistance of micro-arc oxidation coatings on AZ91D magnesium alloys[J]. Chin. J. Nonferrous Met., 2010, 20(8): 1467-1473
(马颖, 詹华, 马跃洲等. 电参数对AZ91D 镁合金微弧氧化膜层微观结构及耐蚀性的影响[J]. 中国有色金属学报, 2010, 20(8): 1467-1473)
[9] Wang S Y, Xia Y P, Liu L. Influences of C3H8O3 concentration on formation and characteristics of MAO coatings on AZ91D magnesium alloy[J]. J. Chin. Soc. Corros. Prot., 2013, 33(3): 235-240
(王淑艳, 夏永平, 刘莉. C3H8O3含量对AZ91D镁合金微弧氧化过程及膜层特性的影响[J]. 中国腐蚀与防护学报, 2013, 33(3): 235-240)
[10] Liu F, Shan D Y, Song Y W, et al. Corrosion behavior of the composite ceramic coating containing zirconium oxides on AM30 magnesium alloy by plasma electrolytic oxidation[J]. Corros. Sci.2011, 53: 3845-3852
[11] Liu F, Shan D Y, Song Y W, et al. Effect of additives on the properties of plasma electrolytic oxidation coatings formed on AM50 magnesium alloy in electrolytes containing K2ZrF6[J]. Surf. Coat. Technol., 2011, 206: 455-463
[12] Song Y W, Dong K H, Shan D Y, et al. Investigation of a novel self-sealing pore micro-arc oxidation film on AM60 magnesium alloy[J]. J. Magnes. Alloy., 2013, 1: 82-87
[13] Yagi S, Kuwabara K, Fukuta Y, et al. Formation of self-repairing anodized film on ACM522 magnesium alloy by plasma electrolytic oxidation[J]. Corros. Sci., 2013, 73: 188-195
[14] Ghasemi A, Raja V S, Blawert C, et al. The role of anions in the formation and corrosion resistance of the plasma electrolytic oxidation coatings[J]. Surf. Coat. Technol., 2012, 204: 1469-1478
[15] Mandelli A, Bestetti M, Da Forno A, et al. A composite coating for corrosion protection of AM60B magnesium alloy[J]. Surf. Coat. Technol., 2011, 205: 4459-4465
[16] Ding J, Liang J, Hu L T, et al. Effects of sodium tungstate on characteristics of microarc oxidation coatings formed on magnesium alloy in silicate-KOH electrolyte[J]. Trans. Nonferrous Met. Soc. China, 2007, 17(2): 244-249
[17] Duan H P, Yan C W, Wang F H. Growth process of plasma electrolytic oxidation films formed on magnesium alloy AZ91D in silicate solution[J]. Electrochim. Acta, 2007, 52(15): 5002-5009
[18] Wu D, Liu X D, Lv K, et al. Influence of glycerol on micro-arc oxidation process and properties of the ceramic coatings on AZ91D magnesium alloy[J]. Mater. Prot., 2009, 42(2): 1-3
(乌迪, 刘向东, 吕凯等. 丙三醇对镁合金微弧氧化过程及膜层的影响[J]. 材料保护, 2009, 42(2): 1-3)
[19] Guo H F, An M Z,Xu S, et al. Effect of current density on mechanism of micro-arc oxidization and property of ceramic coating formed on magnesium alloys[J]. Rare Met. Mater. Eng., 2005, 34(10): 1554-1557
(郭洪飞, 安茂忠, 徐莘等. 电流密度对镁合金微弧氧化过程及氧化陶瓷膜性能的影响[J]. 稀有金属材料与工程, 2005, 34(10): 1554-1557)
[20] Wang H B,Fang Z G,Jiang B L. Microarc Oxidation Technology and Its Applications in Sea Environments[M]. Beijing: National Defense Industry Press, 2010: 6-123
(王虹斌,方志刚,蒋百灵. 微弧氧化技术及其在海洋环境中的应用[M]. 北京: 国防工业出版社, 2010: 6-123)
[21] Jiang B L, Liu D J. Scientific aspects of restricting development and application of micro-arc oxidation technology[J]. Chin. J. Nonferrous Met., 2011, 21(10): 2402-2407
(蒋百灵, 刘东杰. 制约微弧氧化技术应用开发的几个科学问题[J]. 中国有色金属学报, 2011, 21(10): 2402-2407)
[22] Cui X J, Liu C H, Yang R S, et al. Duplex-layered manganese phosphate conversion coating on AZ31 Mg alloy and its initial formation mechanism[J]. Corros. Sci., 2013, 76: 474-485
[1] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[2] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[3] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[4] BAO Ren, ZHOU Genshu, LI Hongwei. Preparation of High-tin Bronze Corrosion-resistant Coating by Potentiostatic Pulse Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[5] YUE Liangliang, MA Baoji. Effect of Ultrasonic Surface Rolling Process on Corrosion Behavior of AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[6] LIU Haixia, HUANG Feng, YUAN Wei, HU Qian, LIU Jing. Corrosion Behavior of 690 MPa Grade High Strength Bainite Steel in a Simulated Rural Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[7] LI Congwei, DU Shuangming, ZENG Zhilin, LIU Eryong, WANG Feihu, MA Fuliang. Effect of Current Density on Microstructure, Wear and Corrosion Resistance of Electrodeposited Ni-Co-B Coating[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[8] JIA Yizheng, WANG Baojie, ZHAO Mingjun, XU Daokui. Effect of Solid Solution Treatment on Corrosion and Hydrogen Evolution Behavior of an As-extruded Mg-Zn-Y-Nd Alloy in an Artificial Body Fluid[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.
[9] CAO Jingyi, FANG Zhigang, CHEN Jinhui, CHEN Zhixiong, YIN Wenchang, YANG Yange, ZHANG Wei. Preparation and Properties of Micro-arc Oxide Film with Single Dense Layer on Surface of 5083 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[10] ZHANG Yao, GUO Chen, LIU Yanhui, HAO Meijuan, CHENG Shiming, CHENG Weili. Electrochemical Corrosion Behavior of Extruded Dilute Mg-2Sn-1Al-1Zn Alloy in Simulated Body Fluid[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.
[11] WANG Le,YI Danqing,LIU Huiqun,JIANG Long,FENG Chun. Effect of Ru on Corrosion Behavior of Ti-6Al-4V Alloy and Its Mechanism[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[12] SHI Chao,SHAO Yawei,XIONG Yi,LIU Guangming,YU Yuelong,YANG Zhiguang,XU Chuanqin. Influence of Silane Coupling Agent Modified Zinc Phosphate on Anticorrosion Property of Epoxy Coating[J]. 中国腐蚀与防护学报, 2020, 40(1): 38-44.
[13] WU Dongcai,HAN Peide. Effects of Moderate Temperature Aging Treatment on Corrosion Resistance of SAF2304 DuplexStainless Steel[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[14] YANG Yinchu,FU Xiuqing,LIU Lin,MA Wenke,SHEN Moqi. Electrochemical Corrosion of Ni-P-BN(h)-Al2O3 Composite Coating Deposited by Spray Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(1): 57-62.
[15] JIANG Dongxue,FU Ying,ZHANG Junwei,ZHANG Wei,XIN Li,ZHU Shenglong,WANG Fuhui. Preparation and Properties of Alumina Ceramic Film on Ti-alloy Surface[J]. 中国腐蚀与防护学报, 2019, 39(6): 469-476.
No Suggested Reading articles found!