Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2014, Vol. 34 Issue (5): 439-444    DOI: 10.11902/1005.4537.2014.003
Current Issue | Archive | Adv Search |
Erosion-corrosion Morphology of Cr13 Stainless Steel Induced by Jet Flow of Hydrochloric Acid Solution
CHENG Congqian1, CAO Tieshan1, WANG Dongying2, YAO Jingwen2, WANG Jian1, GUAN Meng2, ZHAO Jie1()
1. School of Materials Science and Engineering, Dalian University of Technology, Dalian 116085, China
2. Nuclear Division, Shenyang Blower Works Group Co. Ltd, Shenyang 110001, China
Download:  HTML  PDF(4937KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Erosion-corrosion morphology of Cr13 stainless steel induced by jet flow of hydrochloric acid solution was characterized by means of SEM. Round-shaped pits was observed on the surface site corresponding to the center of impingement area of the jet flow. Around the center area, there exist radial patterns of comet-like grooves. The density of pits and grooves increases with increasing corrosion time. SEM micrographs reveal that the comet-like grooves composed of a pit as its head and a swallow-like groove as its tail, of which the head is initiated on the inclusion MnS particles; however, the tail is mainly laid on site of the martensite, while no obvious corrosion occurs on the δ-Ferrite zone of the steel.

Key words:  stainless steel      impingement      corrosion morphology      pit      inclusion     
ZTFLH:  TG172  
  TG174  
  TB304  

Cite this article: 

CHENG Congqian, CAO Tieshan, WANG Dongying, YAO Jingwen, WANG Jian, GUAN Meng, ZHAO Jie. Erosion-corrosion Morphology of Cr13 Stainless Steel Induced by Jet Flow of Hydrochloric Acid Solution. Journal of Chinese Society for Corrosion and protection, 2014, 34(5): 439-444.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2014.003     OR     https://www.jcscp.org/EN/Y2014/V34/I5/439

Fig.1  Schematic of experimental loop for corrosion test under flow jet impingement
Phase area 1 2 3 4 5 Average
δ ferrite 243 210 222 220 233 226±13
Martensite 310 256 264 292 291 283±22
Table 1  Microhardness at different microstructure zone of Cr13 stainless steel (loading force: 10 N)
Fig.2  Metallographic microstructure and indentation of Cr13 stainless steel
Fig.3  Macrographs of Cr13 stainless steel after impingement corrosion for 60 min: (a) sample surface, (b) region A in Fig.3a, (c) region B in Fig.3a
Fig.4  Typical morphology of black comet tail
Fig.5  Density of black point and comet tailat different regions on surface of Cr13 stainless steel after corrosion for different time
Fig.6  SEM micrograph of comet stripes at region B of Fig.3a
Fig.7  EDS element mapping of pit for Cr13 stainless steel after 15 min impingement corrosion: (a) morphology, (b) S, (c) Mn, (d) Al, (e) O
Fig.8  EDS element mapping at head of comet stripe for Cr13 stainless steel after 180 min impingement corrosion: (a) morphology, (b) S, (c) Mn, (d) Al, (e) O
[1] Zheng Y G, Yao Z M, Ke W. Review on the effects of hydrodynamic factors on erosion-corrosion[J]. Corros. Sci. Prot. Technol., 2000, 12(1): 36-40
(郑玉贵, 姚治铭, 柯伟. 流体力学因素对冲刷腐蚀的影响机制[J]. 腐蚀科学与防护技术, 2000, 12(1): 36-40)
[2] Cai F, Liu W, Fan X H, et al. Research progress on erosion corrosion of metallic materials under fluid jet impingement[J]. Tribology, 2011, 31(5): 521-527
(蔡峰, 柳伟, 樊学华等. 流体喷射条件下金属材料冲刷腐蚀的研究进展[J]. 摩擦学学报, 2011, 31(5): 521-527)
[3] Jin W X, Luo Y N, Song S Z. Marine erosion-corrosion detections of metal materials[J]. J. Chin. Soc. Corros. Prot., 2008, 28(6): 377-344
(金威贤, 雒娅楠, 宋诗哲. 金属材料实海冲刷腐蚀检测[J]. 中国腐蚀与防护学报, 2008, 28(6): 337-344)
[4] Hu X, Neville A. The electrochemical response of stainlesssteels in liquid-solid impingement[J]. Wear, 2005, 258(1-4): 641-648
[5] Stack M M, Purandare Y, Hovsepian P. Impact angle effects ontheerosion-corrosion of superlattice CrN/NbN PVD coatings[J]. Surf. Coat. Technol., 2004, 188/189: 556-565
[6] Schmitt G, Bakalli M. A critical review of measuring techniquesfor corrosion rates under flow conditions[A]. CORROSION2006 NACE International [C]. San Diego, Texas, 2006, 06593
[7] Xi Y T, Liu D X, Han D, et al. Improvement of erosion and erosion-corrosion resistance of 2Cr13 stainless steel by low temperature plasma nitriding[J]. Mater. Eng., 2007, 11: 76-82
(奚运涛, 刘道新, 韩栋等. 低温离子渗氮提高2Cr13不锈钢的冲蚀磨损与冲刷腐蚀抗力[J]. 材料工程, 2007, 11: 76-82)
[8] Qiao Y X, Liu F H, Ren A, et al. Erosion-corrosion behavior of high nitrogen stainless steel and commercial 321 stainless steel[J]. J. Chin. Soc. Corros. Prot., 2012, 32(2): 141-145
(乔岩欣, 刘飞华, 任爱等. 高氮奥氏体不锈钢的冲刷腐蚀行为[J]. 中国腐蚀与防护学报, 2012, 32(2): 141-145)
[9] Fang X X, Zhen R, Xue Y J, et al. Erosion-corrosion synergism of 65Mn and stainless steel in single liquid phase and liquid/solid two-phase[J]. Chin. J. Mater. Res., 2011, 25(2): 172-178
(方信贤, 甄睿, 薛亚军等. 两种不锈钢在单相流和液/固两相流中冲刷与腐蚀的交互作用[J]. 材料研究学报, 2011, 25(2): 172-178)
[10] Sedrik A J. Corrosion of Stainless Steels (2nd ed.)[M]. NewYork: Wiley, 1996: 82-93
[11] Wharton A J, Wood R J K. Influence of flow conditions on the corrosion of AISI 304L stainless steel[J]. Wear, 2004, 256: 525-536
[12] Sasaki K, Burstein G T. Erosion-corrosion of stainless steel under impingement by a fluid jet[J]. Corros. Sci., 2007, 49: 92-108
[13] Xu L Y, Cheng Y F. Effect of fluid hydrodynamics on flow-assisted corrosion of aluminum alloyin ethylene glycol-water solution studied by a microelectrode technique[J]. Corros. Sci., 2009, 51: 2330-2335
[14] Zhang G A, Cheng Y F. Electrochemical characterization and computational fluid dynamics simulation of flow-accelerated corrosion of X65 steel in a CO2-saturated oilfield formation water[J]. Corros. Sci., 2010, 52: 2716-2724
[15] Wang S G, Sun M, Long K, et al. The electronic structure characterization of oxide film on bulknanocrystalline 304 stainless teel in hydrochloric acid solution[J]. Electrochim. Acta, 2013, 112: 371-377
[16] Alvarez S M, Bautista A, Velasco F. Influence ofstrain-induced martensite in the anodic dissolution ofaustenitic stainless steels in acid medium[J]. Corros. Sci., 2013, 69: 130-138
[17] Fang X X, Xu Y Y, Zhen R, et al. Erosion corrosion behavior of Ni-Cu-P and 316L in high temperature flow containing hydrochloric acid[J]. Rare Met. Mater. Eng., 2012, 41(S2): 505-509
(方信贤, 徐艳艳, 甄睿等. Ni-Cu-P和316L 在含盐酸高温流体中冲蚀行为[J]. 稀有金属材料工程, 2012, 41(增刊2): 505-509)
[18] Zheng S Q, Li C Y, Qi Y M, et al. Mechanism of (Mg, Al, Ca)-oxide inclusion-induced pitting corrosion in 316L stainless steel exposed to sulphur environments containing chloride ion[J]. Corros. Sci., 2013, 67: 20-31
[19] Zheng S J, Wang Y J, Zhang B, et al. Identification of MnCr2O4 nano-octahedron in catalyzing pitting corrosion of austenitic stainless steels[J]. Acta Mater., 2010, 58: 5070-5085
[20] Neville A, Wang C. Erosion-corrosion of engineering steels-Can it be managed by use of chemicals?[J]. Wear, 2009, 267(11): 2018-2026
[1] LIU Xinyi, ZHAO Yazhou, ZHANG Huan, CHEN Li. Effect of Chloride Concentration in a Simulated Concrete Pore Solution on Metastable Pitting of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(2): 195-201.
[2] ZHANG Huiyun, ZHENG Liuwei, MENG Xianming, LIANG Wei. Effect of Electrochemical Hydrogen Charging on Hydrogen Embrittlement Sensitivity of Cr15 Ferritic and 304 Austenitic Stainless Steels[J]. 中国腐蚀与防护学报, 2021, 41(2): 202-208.
[3] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[4] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[5] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[6] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[7] MA Mingwei, ZHAO Zhihao, JING Siwen, YU Wenfeng, GU Yien, WANG Xu, WU Ming. Corrosion Behavior of 17-4 PH Stainless Steel in Simulated Seawater Containing SRB[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[8] YU Haoran, ZHANG Wenli, CUI Zhongyu. Difference in Corrosion Behavior of Four Mg-alloys in Cl--NH4+-NO3- Containing Solution[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[9] DAI Mingjie, LIU Jing, HUANG Feng, HU Qian, LI Shuang. Pitting Corrosion Behavior of X100 Pipeline Steel in a Simulated Acidic Soil Solution under Fluctuated Cathodic Protection Potentials Based on Orthogonal Method[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[10] ZHANG Xin, YANG Guangheng, WANG Zehua, CAO Jing, SHAO Jia, ZHOU Zehua. Corrosion Behavior of Al-Mg-RE Alloy Wires Subjected to Different Cold Drawing Deformation[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[11] HE San, SUN Yinjuan, ZHANG Zhihao, CHENG Jie, QIU Yunpeng, GAO Chaoyang. Corrosion Behavior of 20# Steel in Alkanolamine Solution Mixed with Ionic Liquid Containing Saturated CO2[J]. 中国腐蚀与防护学报, 2020, 40(4): 309-316.
[12] ZHAO Baijie, FAN Yi, LI Zhenzhen, ZHANG Bowei, CHENG Xuequn. Crevice Corrosion Behavior of 316L Stainless Steel Paired with Four Different Materials[J]. 中国腐蚀与防护学报, 2020, 40(4): 332-341.
[13] LI Qing, ZHANG Deping, WANG Wei, WU Wei, LU Lin, AI Chi. Evaluation of Actual Corrosion Status of L80 Tubing Steel and Subsequent Electrochemical and SCC Investigation in Lab[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[14] JIA Yizheng, WANG Baojie, ZHAO Mingjun, XU Daokui. Effect of Solid Solution Treatment on Corrosion and Hydrogen Evolution Behavior of an As-extruded Mg-Zn-Y-Nd Alloy in an Artificial Body Fluid[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.
[15] WANG Yingjun, LIU Honglei, WANG Guojun, DONG Kaihui, SONG Yingwei, NI Dingrui. Investigation of Anodic Film on a Novel RE-containing Al-Alloy Al-Zn-Mg-Cu-Sc[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.
No Suggested Reading articles found!