|
|
Erosion-corrosion Morphology of Cr13 Stainless Steel Induced by Jet Flow of Hydrochloric Acid Solution |
CHENG Congqian1, CAO Tieshan1, WANG Dongying2, YAO Jingwen2, WANG Jian1, GUAN Meng2, ZHAO Jie1( ) |
1. School of Materials Science and Engineering, Dalian University of Technology, Dalian 116085, China 2. Nuclear Division, Shenyang Blower Works Group Co. Ltd, Shenyang 110001, China |
|
|
Abstract Erosion-corrosion morphology of Cr13 stainless steel induced by jet flow of hydrochloric acid solution was characterized by means of SEM. Round-shaped pits was observed on the surface site corresponding to the center of impingement area of the jet flow. Around the center area, there exist radial patterns of comet-like grooves. The density of pits and grooves increases with increasing corrosion time. SEM micrographs reveal that the comet-like grooves composed of a pit as its head and a swallow-like groove as its tail, of which the head is initiated on the inclusion MnS particles; however, the tail is mainly laid on site of the martensite, while no obvious corrosion occurs on the δ-Ferrite zone of the steel.
|
|
|
[1] |
Zheng Y G, Yao Z M, Ke W. Review on the effects of hydrodynamic factors on erosion-corrosion[J]. Corros. Sci. Prot. Technol., 2000, 12(1): 36-40
|
|
(郑玉贵, 姚治铭, 柯伟. 流体力学因素对冲刷腐蚀的影响机制[J]. 腐蚀科学与防护技术, 2000, 12(1): 36-40)
|
[2] |
Cai F, Liu W, Fan X H, et al. Research progress on erosion corrosion of metallic materials under fluid jet impingement[J]. Tribology, 2011, 31(5): 521-527
|
|
(蔡峰, 柳伟, 樊学华等. 流体喷射条件下金属材料冲刷腐蚀的研究进展[J]. 摩擦学学报, 2011, 31(5): 521-527)
|
[3] |
Jin W X, Luo Y N, Song S Z. Marine erosion-corrosion detections of metal materials[J]. J. Chin. Soc. Corros. Prot., 2008, 28(6): 377-344
|
|
(金威贤, 雒娅楠, 宋诗哲. 金属材料实海冲刷腐蚀检测[J]. 中国腐蚀与防护学报, 2008, 28(6): 337-344)
|
[4] |
Hu X, Neville A. The electrochemical response of stainlesssteels in liquid-solid impingement[J]. Wear, 2005, 258(1-4): 641-648
|
[5] |
Stack M M, Purandare Y, Hovsepian P. Impact angle effects ontheerosion-corrosion of superlattice CrN/NbN PVD coatings[J]. Surf. Coat. Technol., 2004, 188/189: 556-565
|
[6] |
Schmitt G, Bakalli M. A critical review of measuring techniquesfor corrosion rates under flow conditions[A]. CORROSION2006 NACE International [C]. San Diego, Texas, 2006, 06593
|
[7] |
Xi Y T, Liu D X, Han D, et al. Improvement of erosion and erosion-corrosion resistance of 2Cr13 stainless steel by low temperature plasma nitriding[J]. Mater. Eng., 2007, 11: 76-82
|
|
(奚运涛, 刘道新, 韩栋等. 低温离子渗氮提高2Cr13不锈钢的冲蚀磨损与冲刷腐蚀抗力[J]. 材料工程, 2007, 11: 76-82)
|
[8] |
Qiao Y X, Liu F H, Ren A, et al. Erosion-corrosion behavior of high nitrogen stainless steel and commercial 321 stainless steel[J]. J. Chin. Soc. Corros. Prot., 2012, 32(2): 141-145
|
|
(乔岩欣, 刘飞华, 任爱等. 高氮奥氏体不锈钢的冲刷腐蚀行为[J]. 中国腐蚀与防护学报, 2012, 32(2): 141-145)
|
[9] |
Fang X X, Zhen R, Xue Y J, et al. Erosion-corrosion synergism of 65Mn and stainless steel in single liquid phase and liquid/solid two-phase[J]. Chin. J. Mater. Res., 2011, 25(2): 172-178
|
|
(方信贤, 甄睿, 薛亚军等. 两种不锈钢在单相流和液/固两相流中冲刷与腐蚀的交互作用[J]. 材料研究学报, 2011, 25(2): 172-178)
|
[10] |
Sedrik A J. Corrosion of Stainless Steels (2nd ed.)[M]. NewYork: Wiley, 1996: 82-93
|
[11] |
Wharton A J, Wood R J K. Influence of flow conditions on the corrosion of AISI 304L stainless steel[J]. Wear, 2004, 256: 525-536
|
[12] |
Sasaki K, Burstein G T. Erosion-corrosion of stainless steel under impingement by a fluid jet[J]. Corros. Sci., 2007, 49: 92-108
|
[13] |
Xu L Y, Cheng Y F. Effect of fluid hydrodynamics on flow-assisted corrosion of aluminum alloyin ethylene glycol-water solution studied by a microelectrode technique[J]. Corros. Sci., 2009, 51: 2330-2335
|
[14] |
Zhang G A, Cheng Y F. Electrochemical characterization and computational fluid dynamics simulation of flow-accelerated corrosion of X65 steel in a CO2-saturated oilfield formation water[J]. Corros. Sci., 2010, 52: 2716-2724
|
[15] |
Wang S G, Sun M, Long K, et al. The electronic structure characterization of oxide film on bulknanocrystalline 304 stainless teel in hydrochloric acid solution[J]. Electrochim. Acta, 2013, 112: 371-377
|
[16] |
Alvarez S M, Bautista A, Velasco F. Influence ofstrain-induced martensite in the anodic dissolution ofaustenitic stainless steels in acid medium[J]. Corros. Sci., 2013, 69: 130-138
|
[17] |
Fang X X, Xu Y Y, Zhen R, et al. Erosion corrosion behavior of Ni-Cu-P and 316L in high temperature flow containing hydrochloric acid[J]. Rare Met. Mater. Eng., 2012, 41(S2): 505-509
|
|
(方信贤, 徐艳艳, 甄睿等. Ni-Cu-P和316L 在含盐酸高温流体中冲蚀行为[J]. 稀有金属材料工程, 2012, 41(增刊2): 505-509)
|
[18] |
Zheng S Q, Li C Y, Qi Y M, et al. Mechanism of (Mg, Al, Ca)-oxide inclusion-induced pitting corrosion in 316L stainless steel exposed to sulphur environments containing chloride ion[J]. Corros. Sci., 2013, 67: 20-31
|
[19] |
Zheng S J, Wang Y J, Zhang B, et al. Identification of MnCr2O4 nano-octahedron in catalyzing pitting corrosion of austenitic stainless steels[J]. Acta Mater., 2010, 58: 5070-5085
|
[20] |
Neville A, Wang C. Erosion-corrosion of engineering steels-Can it be managed by use of chemicals?[J]. Wear, 2009, 267(11): 2018-2026
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|