Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2014, Vol. 34 Issue (1): 65-69    DOI: 10.11902/1005.4537.2013.049
Current Issue | Archive | Adv Search |
Influence of Water Contents on Corrosion Behavior of Continuous Casting Copper-clad Steel in Dagang Soil
ZHU Min, DU Cuiwei(), HUANG Liang, LIU Zhiyong, ZHAO Tianliang, LI Qiong, LI Xiaogang
Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083, China
Download:  HTML  PDF(1147KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behavior of continuous casting copper-clad steel in Dagang soil with 20%~30% water contents was studied by polarization curve measurement and EIS. It is shown that during the initial corrosion stage, the corrosion rates of continuous casting copper-clad steel are almost equal, which imply the water contents have little influence on the corrosion behavior. The control step for corrosion of continuous casting copper-clad steel in the soil is activation polarization process at the initial stage. During the later stage, the corrosion rates of continuous casting copper-clad steel decrease and then tend to be stable with the increase of water contents, which may be due to the synergistic effect of the two opposite factors i.e. the block effect with reducing oxygen and the stimulation effect with environmental water on the electrode process. However the corrosion behavior is mainly affected by oxygen diffusion control.

Key words:  continuous casting copper-clad steel      water content      Dagang soil      corrosion behavior     
Received:  08 April 2013     
ZTFLH:  TG172.4  
About author:  null

朱敏,男,1985年生,博士生,研究方向为材料的腐蚀与防护

Cite this article: 

ZHU Min, DU Cuiwei, HUANG Liang, LIU Zhiyong, ZHAO Tianliang, LI Qiong, LI Xiaogang. Influence of Water Contents on Corrosion Behavior of Continuous Casting Copper-clad Steel in Dagang Soil. Journal of Chinese Society for Corrosion and protection, 2014, 34(1): 65-69.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2013.049     OR     https://www.jcscp.org/EN/Y2014/V34/I1/65

Fig.1  Surface micro-morphology of the continuous casting copper-clad steel
Fig.2  Polarization curves of the continuous casting copper-clad steel buried for 1 d in the soil with the different contents of water
Fig.3  Polarization curves of the continuous casting copper-clad steel buried in the soil of different water content for 30 d
Water content / % Ecorr / mV Icorr / μAcm-2
20 -0.1600 23.54
25 -0.1599 10.63
30 -0.1678 11.35
Table 1  Fitting results of polarization curves
Fig.4  EIS of the continuous casting copper-clad steel buried in Dagang soil with different water contents

(a) Nyquist plot, (b) Bode plot (phase angle vs frequency), (c) Bode plot (|Z| vs frequency)

Fig.5  Corresponding equivalent circuits of Rs(Q1R1(QdlRt)) (a) and Rs(Qdl(RtW)) (b)
Water content / % Rs / Ωcm2 Q1-Y0 / Ssecn R1 / Ωcm2 Qdl-Y0 / Ssecn Rt / Ωcm2 W / Ssec0.5
20 22.2 0.000249 2826.9 0.000266 1995.6 ---
25 79.7 --- --- 0.000178 2396.3 0.003933
30 69.4 --- --- 0.000142 2586.2 0.005753
Table 2  Fitting results of EIS equivalent circuits
[1] Zhou P P, Wang S, Li Z Z, et al. Review of corrosion resistant metals for grounding[J]. Elec. Power Constr., 2010, 31(8): 51-54
(周佩朋, 王森, 李志忠等. 耐蚀性金属接地材料研究综述[J]. 电力建设, 2010, 31(8): 51-54)
[2] Weng Y F. Analysis of grounding connection cauterization and the suggestions for material selection[J]. Zhejiang Elec. Power, 2003, (4): 54-56
(翁羽丰. 接地装置腐蚀分析及材料选用建议[J]. 浙江电力, 2003, (4): 54-56)
[3] Li J L. Utility Electrical Grounding Technology[M]. Beijing: China Electric Power Press, 2002
(李景禄. 实用电力接地技术[M]. 北京:中国电力出版社, 2002)
[4] Yang D W, Li J L. Analysis on corrosion and anti-corrosion measure of substation grounding device[J]. Insul. Surg. Arresters, 2004, (2): 43-46
(杨道武, 李景禄. 发电厂变电所接地装置的腐蚀及防腐蚀措施[J]. 电瓷避雷器, 2004, (2): 43-46)
[5] Riemer D, Orazem M. A mathematical model for the cathodic protection of tank bottoms[J]. Corros. Sci., 2005, 47(3): 849-868
[6] Thara A, Shinohara T. Influence of the alloy element on corrosion morphology of the low alloy steels exposed to the atmospheric environments[J]. Corros. Sci., 2005, 47(10): 2589-2598
[7] Hoffmeister H. Modeling of crevice corrosion of pure nickel by coupling of phase and polarization behavior at various pH, chloride, and oxygen levels[J]. Corrosion, 2005, 61(9): 880
[8] Gerwin W, Baumhauer R. Effect of soil parameters on the corrosion of archaeological metal finds[J]. Geoderma, 2000, 96(1): 63-80
[9] Dong C F, Li X G, Wu J W. Review in experimentation and data processing soil corrosion[J]. Corros. Sci. Prot. Technol., 2003, 15: 154-160
(董超芳, 李晓刚, 武俊伟. 土壤腐蚀的实验研究与数据处理[J]. 腐蚀科学与防护技术, 2003, 15: 154-160)
[10] Chen X, Du C W, Li X G, et al. Influences of water content on the corrosion behavior of X70 steel in Dagang saline-alkaline soil[J]. Univ. Sci. Technol. Beijing, 2008, 30(7): 730-734
(陈旭, 杜翠薇, 李晓刚等. 含水量对X70钢在大港滨海盐渍土壤中腐蚀行为的影响[J]. 北京科技大学学报, 2008, 30(7): 730-734)
[11] Yang J P, Di Z, Weng Y J. Study on regional soil corrosiveness in Dagang oil field[J]. Corros. Sci. Prot. Technol., 1995, 7: 275-276
(杨建平, 狄峥, 翁永基. 大港油田区域土壤腐蚀性研究[J]. 腐蚀科学与防护技术, 1995, 7: 275-276)
[12] Cao C N,Zhang J Q. Electrochemical Impedance Spectroscopy[M]. Beijing: Science Press, 2004
(曹楚南,张鉴清. 电化学阻抗谱导论[M]. 北京: 科学出版社, 2004)
[13] Wang Y H, Wang J, Zhang J B. Influences of current density on the properties of micro-arc oxidation coatings on AZ91D Mg alloy[J]. J. Chin. Soc. Corros. Prot., 2005, 25(6): 332-335
(王燕华, 王佳, 张际标. 电流密度对AZ91D镁合金微弧氧化膜性能的影响[J]. 中国腐蚀与防护学报, 2005, 25(6): 332-335)
[14] Liang P, Li X G, Du C W, et al. Effect of dissolved oxygen on corrosion resistance of X80 pipeline steel in NS4 solution[J]. Corros. Sci. Prot. Technol., 2009, 21(1): 20-23
(梁平, 李晓刚, 杜翠薇等. 溶解氧对X80管线钢在NS4溶液中腐蚀行为的影响[J]. 腐蚀科学与防护技术, 2009, 21(1): 20-23)
[15] Li J B, Zuo J E. Influence of temperature and sulfur ion on carbon dioxide corrosion behavior of N80 steel[J]. Corros. Sci. Prot. Technol., 2009, 21(1): 44-47
(李金波, 左剑恶. 温度和硫离子对N80钢CO2腐蚀电化学行为的影响[J]. 腐蚀科学与防护技术, 2009, 21(1): 44-47)
[16] Wei B M. Theory and Application of Metal Corrosion[M]. Beijing: Chemistry Industry Press, 2004
(魏宝明. 金属腐蚀理论及应用[M]. 北京: 化学工业出版社, 2004)
[17] Li M C, Lin H C, Cao C N. Influence of moisture content on soil corrosion behavior of carbon steel[J]. Corros. Sci. Prot. Technol., 2000, 14(4): 218-221
(李谋成, 林海潮, 曹楚南. 湿度对钢铁材料在中性土壤中腐蚀行为的影响[J]. 腐蚀科学与防护技术, 2000, 14(4): 218-221)
[18] Gardiner C P, Melchers R E. Corrosion of mild steel in porous media[J]. Corros. Sci., 2002, 44: 2459-2478
[19] Nie X H, Li X G, Du C W, et al. EIS analysis of Q235 corrosion in sea-shore salt soil with different water contents[J]. J. Mater. Eng., 2009, 6: 17-19
(聂向辉, 李晓刚, 杜翠微等. Q235钢在不同含水量滨海盐土中腐蚀的电化学阻抗谱分析[J]. 材料工程, 2009, 6: 17-19)
[1] HUANG Tao, XU Chunxiang, YANG Lijing, LI Fuxia, JIA Qinggong, KUAN Jun, ZHANG Zhengwei, WU Xiaofeng, WANG Zhongqi. Effect of Zr Addition on Microstructure and Corrosion Behavior of Mg-3Zn-1Y Alloys[J]. 中国腐蚀与防护学报, 2021, 41(2): 219-225.
[2] LI Lin, CHEN Yiqing, GAO Peng, AI Fangfang, ZHONG Bin, SAN Hongyu, YANG Ying. Corrosion Resistance of Various Bridge Steels in Deicing Salt Environments[J]. 中国腐蚀与防护学报, 2020, 40(5): 448-454.
[3] ZHANG Xin, YANG Guangheng, WANG Zehua, CAO Jing, SHAO Jia, ZHOU Zehua. Corrosion Behavior of Al-Mg-RE Alloy Wires Subjected to Different Cold Drawing Deformation[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[4] LI Qing, ZHANG Deping, WANG Wei, WU Wei, LU Lin, AI Chi. Evaluation of Actual Corrosion Status of L80 Tubing Steel and Subsequent Electrochemical and SCC Investigation in Lab[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[5] HU Lulu, ZHAO Xuyang, LIU Pan, WU Fangfang, ZHANG Jianqing, LENG Wenhua, CAO Fahe. Effect of AC Electric Field and Thickness of Electrolyte Film on Corrosion Behavior of A6082-T6 Al Alloy[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[6] WANG Xinhua, YANG Yong, CHEN Yingchun, WEI Kailing. Effect of Alternating Current on Corrosion Behavior of X100 Pipeline Steel in a Simulated Solution for Soil Medium at Korla District[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[7] HU Yuting, DONG Pengfei, JIANG Li, XIAO Kui, DONG Chaofang, WU Junsheng, LI Xiaogang. Corrosion Behavior of Riveted Joints of TC4 Ti-Alloy and 316L Stainless Steel in Simulated Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[8] SHEN Shuyang, WANG Dongsheng, SUN Shibin, YANG Ti, ZHAO Qianjing, WANG Xin, ZHANG Yafei, CHANG Xueting. Corrosion Behavior in Artificial Seawater of Subzero Treated EH40 Marine Steel Suitable for ExtremelyCold Environments[J]. 中国腐蚀与防护学报, 2020, 40(2): 151-158.
[9] SU Xiaohong,HU Huie,KONG Xiaodong. Corrosion Behavior of W Particles/Zr41.2Ti13.8Cu12.5Ni10Be22.5 Metallic Glass Matrix Composite in 3%NaCl Solution[J]. 中国腐蚀与防护学报, 2020, 40(1): 70-74.
[10] WANG Qinying,PEI Rui,XI Yuchen. Erosion-corrosion Behavior of Laser-clad Ni-based Alloy Coating on Q235 Carbon Steel[J]. 中国腐蚀与防护学报, 2019, 39(5): 458-462.
[11] GUO Tieming,ZHANG Yanwen,QIN Junshan,SONG Zhitao,DONG Jianjun. Corrosion Behavior of Q345q Bridge Steel in Three Simulated Atmospheres[J]. 中国腐蚀与防护学报, 2019, 39(4): 319-330.
[12] Bobo HUANG,Ping LIU,Xinkuan LIU,Pinxiu MEI,Xiaohong CHEN. Seawater Corrosion Behavior of New 70-1 Tin Brass Net in Waters off Dachen Island for Two Years[J]. 中国腐蚀与防护学报, 2018, 38(6): 594-600.
[13] Haijiao CAO, Yinghua WEI, Hongtao ZHAO, Chenxi LV, Yaozong MAO, Jing LI. Effect of Preheating Time on Protective Performance of Fusion Bonded Epoxy Powder Coating on Q345 Steel II: Failure Behavior Analysis of Coating[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.
[14] Shuaixing WANG, Nan DU, Daoxin LIU, Jinhua XIAO, Danping DENG. Influence of Soil Water Content Adjusted by Simulated Acid Rain on Corrosion Behavior of X80 Steel in Red Soil[J]. 中国腐蚀与防护学报, 2018, 38(2): 147-157.
[15] Jie ZHANG, Xiuhua HU, Chuanbo ZHENG, Jizhou DUAN, Baorong HOU. Influence of Calcareous Deposit on Corrosion Behavior of Q235 Carbon Steel in Marine Microalgae Containing Medium[J]. 中国腐蚀与防护学报, 2018, 38(1): 18-25.
No Suggested Reading articles found!