Please wait a minute...
J Chin Soc Corr Pro  2012, Vol. 32 Issue (3): 195-202    DOI:
Current Issue | Archive | Adv Search |
EVOLUTION MECHANISM OF PITTING OF Al CLAD 7075 AND 2024 ALUMINIUM ALLOY IN COASTAL ENVIRONMENT
SUN Shuangqing1, ZHAO Yubing2, ZHENG Qifei3, LI Defu3
1. Key Laboratory of New Energy Physics & Materials Science in University of Shandong, Faculty of Science, China University of Petroleum, Dongying, Shandong 257061
2. Department of Petroleum Refining Engineering Construction, PetroChina, Beijing 100028
3. General Research Institute for Nonferrous Metals, Beijing 100088
Download:  PDF(4530KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Evolution mechanism of pitting of Al clad 7075 and 2024 aluminium alloy in coastal environment was investigated by long-term field testing and laboratory-accelerated test. Corrosion morphologies, elemental distribution and corrosion potential were observed and analyzed by SEM, EDS and electrochemical analysis system. The result of EDS spectrum showed that the outer cladding layer only revealed the presence of Al and Zn, while the inner cladding layer still showed certain Mg content besides Al and Zn. A small quantity of Mg enhanced corrosion resistance of the inner cladding layer, which results that the cladding has not been penetrated by pitting after 20 years exposure in coastal environment. Moreover, the shape of those pits in coastal environment was wide and shallow in field testing and laboratory-accelerated test.
Key words:  high-strength aluminum      atmospheric corrosion      coastal environment      pitting corrosion     
Received:  07 November 2011     
ZTFLH: 

TG172.3

 
Corresponding Authors:  SUN Shuangqing     E-mail:  sqsu@yahoo.cn

Cite this article: 

SUN Shuangqing, ZHAO Yubing, ZHENG Qifei, LI Defu. EVOLUTION MECHANISM OF PITTING OF Al CLAD 7075 AND 2024 ALUMINIUM ALLOY IN COASTAL ENVIRONMENT. J Chin Soc Corr Pro, 2012, 32(3): 195-202.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2012/V32/I3/195

[1] Cavaliere P, Nobile R, Panella F W, et al. Mechanical and microstructural behaviour of 2024-7075 aluminium alloy sheets joined by friction stir welding [J]. Int. J. Mach. Tools Manuf., 2006, 46(6): 588-594

[2] He C W, Cai X S, Li S Q. Corrosion and corrosion fatigue of typical aircraft joints [J]. Corros. Prot., 2006,27(3): 118-121

    (贺崇武, 蔡新锁, 李素强.飞机典型连接件腐蚀及腐蚀疲劳试验研究[J]. 腐蚀与防护, 2006, 27(3):118-121)

[3] Starke E A, Staley J T. Application of modern aluminum alloys to aircraft [J]. Prog. Aeros. Sci., 1996, 32(2):131-172

[4] Cheng Z H. Study on corrosion behaviors of the LY12CZ aluminum alloy plane component [D]. Harbin: Harbin Institute of Technology, 2006

    (程宗辉.LY12CZ铝合金飞机构件腐蚀行为研究[D]. 哈尔滨: 哈尔滨工业大学, 2006)

[5] Guillaumin V, Mankowski G. Localized corrosion of 2024 T351 aluminium alloy in chloride media [J]. Corros. Sci., 1999,41(3): 421-438

[6] Van Horn K R, Aluminum Vol. I. Properties, Physical Metallurgy and Phase Diagrams [M]. Metals Park, Ohio: American Society for Metals, 1967

[7] Szklarska-Smialowska Z. Pitting corrosion of aluminum [J].Corros. Sci., 1999, 41(9): 1743-1767

[8] Callaghan B G. Atmospheric Corrosion Testing in Southern Africa [A]. Atmospheric Corrosion [C]. New York, 1982

[9] Summitt R, Fink F T. The USAF Corrosion Testing Program and a Corrosion Severity Index Algorithm [A]. Atmospheric Corrosion [C]. New York, 1982

[10] Dean S W, Anthony W H. Atmospheric Corrosion of Wrought Aluminum Alloys During a Ten-Year Period [A]. Degradation of Metals in the Atmosphere [C]. Philadelphia, 1988

[11] Petroyiannis P V, Pantelakis S G, Haidemenopoulos G N. Protective role of local Al cladding against corrosion damage and hydrogen embrittlement of 2024 aluminum alloy specimens [J].Theor. Appl. Fract. Mech., 2005, 44(1): 70-81

[12] Han W, Wang Z Y, Yu G C. Atmospheric corrosion behavior of two high strength aluminum alloys with aluminum overlayer under strain [J]. Corros. Sci. Prot. Technol., 2003,15(5): 254-257

     (韩薇, 王振尧, 于国才.两种包铝的高强铝合金受力状态下的大气腐蚀行为[J]. 腐蚀科学与防护技术,2003, 15(5): 254-257)

[13] Liu H C, Gu A, Zhu L Q, et al. Influence of partial aluminum clad on pitting of aluminum alloy fatigue samples in NSS [J]. Journal of Aeronautical Materials, 2009, 29(4): 52-56

     (刘慧丛, 谷岸, 朱立群等.局部包铝层对铝合金疲劳板材盐雾环境中点腐蚀的影响[J]. 航空材料学报,2009, 29(4): 52-56)

[14] Elola A S, Otero T F, Porro A. Evolution of the pitting of aluminum exposed to the atmosphere [J]. Corrosion, 1992, 48(10):854-863

[15] Burynski Jr R M, Chen G S, Wei R P. Evolution of Pitting Corrosion in a 2024-T3 Aluminum Alloy [A]. Structural Integrity in Aging Aircraft, ASME International Mechanical Engineering Congress and Exposition [C]. San Francisco, California, 1995

[16] Romans H S, Craig H L J. Atmospheric Stress Corrosion Testing of Aluminum alloy [A], Metal Corrosion in the Atmosphere [C]. Baltimore, 1968
 
[1] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[3] YU Haoran, ZHANG Wenli, CUI Zhongyu. Difference in Corrosion Behavior of Four Mg-alloys in Cl--NH4+-NO3- Containing Solution[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[4] DAI Mingjie, LIU Jing, HUANG Feng, HU Qian, LI Shuang. Pitting Corrosion Behavior of X100 Pipeline Steel in a Simulated Acidic Soil Solution under Fluctuated Cathodic Protection Potentials Based on Orthogonal Method[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[5] ZHANG Xin, YANG Guangheng, WANG Zehua, CAO Jing, SHAO Jia, ZHOU Zehua. Corrosion Behavior of Al-Mg-RE Alloy Wires Subjected to Different Cold Drawing Deformation[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[6] HE San, SUN Yinjuan, ZHANG Zhihao, CHENG Jie, QIU Yunpeng, GAO Chaoyang. Corrosion Behavior of 20# Steel in Alkanolamine Solution Mixed with Ionic Liquid Containing Saturated CO2[J]. 中国腐蚀与防护学报, 2020, 40(4): 309-316.
[7] LI Qing, ZHANG Deping, WANG Wei, WU Wei, LU Lin, AI Chi. Evaluation of Actual Corrosion Status of L80 Tubing Steel and Subsequent Electrochemical and SCC Investigation in Lab[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[8] FAN Yi,CHEN Linheng,CAI Jiaxing,DAi Qinqin,MA Hongchi,CHENG Xuequn. Corrosion Behavior of Hot-rolled AH36 Plate in Indoor Storage Environment[J]. 中国腐蚀与防护学报, 2020, 40(1): 10-16.
[9] PAN Chengcheng,MA Chao,XIA Dahai. Estimation for Relevance of Atmospheric Corrosion Initiation with Surface Texture of Several Metallic Materials by Electron Backscattering Diffraction[J]. 中国腐蚀与防护学报, 2019, 39(6): 495-503.
[10] ZHAO Jinbin,ZHAO Qiyue,CHEN Linheng,HUANG Yunhua,CHENG Xuequn,LI Xiaogang. Effect of Different Surface Treatments on Corrosion Behavior of 300M Steel in Qingdao Marine Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
[11] ZHAO Shuyan,TONG Xinhong,LIU Fuchun,WENG Jinyu,HAN En-Hou,LI Xiaohui,YANG Lin. Corrosion Resistance of Three Zinc-rich Epoxy Coatings[J]. 中国腐蚀与防护学报, 2019, 39(6): 563-570.
[12] DENG Junhao,HU Jiezhen,DENG Peichang,WANG Gui,WU Jingquan,WANG Kun. Effect of Oxide Scales on Initial Corrosion Behavior of SPHC Hot Rolled Steel in Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(4): 331-337.
[13] Yu LI,Lei GUAN,Guan WANG,Bo ZHANG,Wei KE. Influence of Mechanical Stresses on Pitting Corrosion of Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(3): 215-226.
[14] Yongwei SUN,Yuping ZHONG,Lingshui WANG,Fangxiong FAN,Yatao CHEN. Corrosion Behavior of Low-alloy High Strength Steels in a Simulated Common SO2-containing Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[15] Li WANG, Chunyun GUO, Kui XIAO, Tuerxun·Silayiding, Chaofang DONG, Xiaogang LI. Corrosion Behavior of Carbon Steels Q235 and Q450 in Dry Hot Atmosphere at Turpan District for Four Years[J]. 中国腐蚀与防护学报, 2018, 38(5): 431-437.
No Suggested Reading articles found!