Please wait a minute...
J Chin Soc Corr Pro  2012, Vol. 32 Issue (3): 189-194    DOI:
Current Issue | Archive | Adv Search |
RESEARCH PROGRESS FOR STRESS CORROSION CRACKING OF STAINLESS STEEL UNDER MARINE ENVIRONMENT
DONG Xiqing1,2, HUANG Yanliang1
1. Key Laboratory of Corrosion Science of Shandong Institute of Oceanology, Chinese Academy of Sciences,Qingdao 266071
2. Graduate University of Chinese Academy of Sciences, Beijing 100049
Download:  PDF(486KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Stainless steel materials are widely used in coastal infrastructure. These infrastructure is apt to corrode under severe marine environment. Several common mechanisms for stress corrosion cracking are introduced in this paper, as well as some main methods usually used to investigate the phenomenon of stress corrosion cracking and hydrogen embrittlement. Meanwhile, feasible method to control the stress corrosion cracking of stainless steel was proposed.
Key words:  stress corrosion cracking      stainless steel      hydrogen embrittlement     
Received:  07 April 2011     
ZTFLH: 

TG172.5

 
Corresponding Authors:  HUANG Yanliang     E-mail:  hyl@ms.qdio.ac.cn

Cite this article: 

DONG Xiqing, HUANG Yanliang. RESEARCH PROGRESS FOR STRESS CORROSION CRACKING OF STAINLESS STEEL UNDER MARINE ENVIRONMENT. J Chin Soc Corr Pro, 2012, 32(3): 189-194.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2012/V32/I3/189

[1] Stachle R W. Stress corrosion cracking of the Fe-Cr-Ni alloy system [A]. The Theory of Stress Corrosion Cracking in Alloys[C]. Ericeira Portugal, 1971: 223
[2] Zuo J Y. Stress Corrosion Cracking[M]. Xi'an:Xi'an Jiaotong University Press, 1985
    (左景伊. 应力腐蚀破裂[M].西安: 西安交通大学出版社, 1985)
[3] John W Oldfield, Brain T. Ambient temperature stress corrosion cracking of austenitic stainless steel in swimming pools[J]. Mater. Perform., 1990, 29(12): 57-58
[4] Robert M K. Marine atmospheric stress corrosion cracking of austenitic stainless steels[J]. Mater. Perform., 1990, 29(12): 60-62
[5] Gnanamoorthy J B. Stress corrosion cracking of unsensitized stainless steels in ambient-temperature coastal atmosphere[J]. Mater. Perform., 1990, 29(12): 63-65
[6] Dillon C P. Imponderables in chloride stress corrosion cracking of stainless steels[J]. Mater.Perform., 1990, 29(12): 66-67
[7] Torchio S. Stress corrosion cracking of type AISI 304 stainless steel at room temperature; influence of chloride content and acidity[J]. Corros. Sci., 1980, 25(4): 555-561
[8] Sunada S, Kariba M, Majima K, et al. Influence of concentration of H2SO4 and NaCl on stress corrosion cracking in H2SO4-NaCl solutions[J]. J. Jpn. Inst. Met.,2005, 69(10): 899-906
[9] Nishimura R, Maeda Y. SCC evaluation of type 304 and 316 austenitic stainless steels in acidic chloride solutions using the slow strain rate technique[J]. Corros. Sci., 2004, 46(3): 769-785
[10] Pan C, Chu W Y, Li Z B, et al. Hydrogen embrittlement induced by atomic hydrogen and hydrogen-induced martensites in type 304L stainless steel[J]. Mater. Sci. Eng., 2003, A351(1-2): 293-298
[11] Nishimura R, Maeda Y. Metal dissolution and maximum stress during SCC process of ferritic (type 430) and austenitic (type 304 and type 316) stainless steels in acidic chloride solutions under constant applied stress[J]. Corros. Sci., 2004,46(3): 755-768
[12] Chu W Y, Qiao L J, Gao K W. Investigation of stress corrosion cracking under anodic dissolution control[J]. Chin. Sci.Bull., 2001, 46(9):717-722
[13] Niu L, Cao C N, Lin H C, et al. Inhibitive effect of benzotriazole on the stress corrosion cracking of 18Cr-9Ni-Ti stainless steel in acidic chloride solution[J]. Corros. Sci.,1998, 40(7): 1109-1117
[14] Fang Z, Wu Y, Zhu R, et al. Stress corrosion cracking of austenitic type-304 stainless steel in solutions of hydrochloric-acid plus sodium-chloride at ambient temperature[J].Corrosion, 1994, 50(11): 873-878
[15] Cao C N, Yang Q G, Lv M, et al. Inhibitor for SCC of AISI 321 in acidic chloride solution[J]. J. Chin. Soc. Corros. Prot.,1992, 12(2): 109-115
     (曹楚南, 杨乾刚, 吕明等.321不锈钢在酸性氯离子溶液中SCC缓蚀剂研究[J]. 中国腐蚀与防护学报,1992, 12(2): 109-115)
[16] Xiao J M. Metallography Problems of Stainless Steel[M].Beijing:Metallurgy Industry Press, 2006
     (肖纪美.不锈钢的金属学问题[M]. 北京: 冶金工业出版社, 2006)
[17] Chen H, Gao K W, Chu W Y, et al. Stress corrosion cracking enhancing martensite transformation of type 304 stainless steel[J]. Acta Metall. Sin., 2002, 38(8): 857-860
     (陈浩,高克玮, 褚武扬等. 304不锈钢应力腐蚀促进马氏体相变[J]金属学报, 2002,38(8): 557-860)
[18] Qiao L J, Xiao J M, Chu W Y, et al. Concentration distribution of hydrogen at crack tip of austenitic stainless steel after stress corrosion and hydrogen charging[J]. J. Chin. Soc.Corros. Prot., 1989, 9(3): 235-239
     (乔利杰, 肖纪美, 褚武扬等.奥氏体不锈钢应力腐蚀和氢致开裂裂尖区的氢浓度分布[J].中国腐蚀与防护学报, 1989, 9(3): 235-239)
[19] Kaesche H. Metallic Corrosion[M]. Beijing: Chemical Industry Press, 1980
     (克舍. 金属腐蚀[M]. 北京: 化学工业出版社, 1980)
[20] Hoar T P, Hines J G. The corrosion potential of stainless steels during stress corrosion[J]. J. Iron. Steel Int., 1954,177: 248-249
[21] Chu W Y, Xiao J M, Li S Q. Mechanism of hydrogen induced cracking in steels[J]. Acta Metall. Sin., 1981, 17(1): 10-17
     (褚武扬, 肖纪美, 李世琼. 钢中氢致裂纹机构研究[J]. 金属学报, 1981, 17(1): 10-17)
[22] Smith G C, Bernstein I M, Thompson A W. Hydrogen in Metal[A]. Metals Park[C]. Ohio, 1974: 485
[23] Chen L, Xu Y B, Yin W Q. Unhealed porosities and crystalline steps in flakes[J]. Acta Metall. Sin., 1978, 14(3):253-256
     (陈廉, 徐永波, 尹万全.钢中白点断口的显微空隙与台阶花样[J]. 金属学报, 1978, 14(3), 253-256)
[24] Uhlig H H, Sava J. The effect of heat treatment on stress corrosion cracking of iron and mild steel[J]. Trans. ASM, 1963, 56:361-376
[25] Yoshino K, McMahon C J. The cooperative relation between temper embrittlement and hydrogen embrittlement in a high strength steel[J]. Metall. Trans., 1974, 5: 363
[26] Oriani R A. Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys[A]. International Conference on Stress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys[C]. Houston, TX, 1977, 351
[27] Chu W Y, Li S Q, Xiao J M. Stress corrosion of high strength steels in water medium[J]. Acta Metall. Sin., 1980, 16(2):179-189
     (褚武扬, 李世琼, 肖纪美.高强度钢水介质应力腐蚀研究[J]. 金属学报, 1980, 16(2): 179-189)
[28] Chu W Y, Hsiao C M, Li Z J. Mechanism of SCC of steel in H2S[J]. Corrosion, 1980, 36: 475-480
[29] Chu W Y, Liu T W, Hsiao C M. Mechanism of SCC of low alloy steels[J]. Corrosion, 1981, 37: 320-322
[30] Chu W Y, Wang H L, Ma R T, et al. Mechanism of slow crack growth and stress corrosion cracking in austenitic stainless steel[J]. Acta Metall. Sin., 1985, 21(1): 86-94
     (褚武扬,王核力, 马若涛等. 奥氏体不锈钢应力腐蚀和氢致开裂的机理[J]. 金属学报,1985, 21(1): 86-94)
[31] McEvily A J, Bond A P. On the initiation and growth of stress corrosion cracks in tarnished brass[J]. J. Electrochem. Soc.,1965, 112(2): 131-138
[32] Nielsen N A. The Role of Corrosion Products in Crack Propagation in Austenitic Stainless Steel. Electron Microscopic Studies[A]. Physical Metallurgy of Stress Corrosion Fracture[C]. New York, 1959: 341
[33] Pourbaix M. Significance of protection potential in pitting and intergranular corrosion[J]. Corrosion, 1970, 26: 431.
[34] Parkins R N. Slow Strain Rate Testing-25Years Experience[A]. Slow Strain Rate Testing for the Evaluation of Environmentally Induced Cracking: Research and Engineering Applications[C]. Philadephia,1993: 7-21
[35] Parkins R N. Development of Slow Strain Rate Testing and its Implications[A]. Stress Corrosion Cracking: Slow Strain Rate Technique[C]. Philadephia, 1979: 5-25
[36] Payer J H, Berry W E, Boyd W K. Evaluation of Slow Strain-Rate Stress Corrosion Tests Results[A]. Stress Corrosion Cracking: Slow Strain Rate Technique[C]. Philadephia, 1979: 61-77
[37] Schofied M J, Bradshaw R, Cottis R A. Stress corrosion cracking of duplex stainless steel weldments in sour conditions[J].Mater. Perform., 1996, 35(4): 65-70
[38] Meyn D A, Pao P S. Slow Strain Rate Testing of Precracked Titanium Alloys in Salt Water and Inert Environment[A]. Slow Strain Rate Testing for the Evaluation of Environmentally Induced Cracking:Research and Engineering Applications[C]. Philadephia, 1993: 158-169
[39] Erilsson H, Berhandsson S. Applicability of duplex stainless steels in sour environments[J]. Corrosion, 1991, 47(9):719-727
[40] Beavers J A, Koch G H. Limitations of Slow Strain Rate Testing Technique[A]. Slow Strain Rate Testing for the Evaluation of Environmentally Induced Cracking: Research and Engineering Applications[C]. Philadephia, 1993: 22-39
[41] Kane R D, Wilhelm S M. Status of Standardization Activities on Slow Strain Rate Testing Techniques[A]. Slow Strain Rate Testing for the Evaluation of Environmentally Induced Cracking:Research and Engineering Applications[C]. Philadephia, 1993: 40-47
[42] Zhang X Y, Du Y L. Relationship between susceptibility to embrittlement and hydrogen permeation current for UNS G10190 steel in 5% NaCl solution containing H2S[J]. Br. Corros. J., 1998,33(4): 292-296
[43] Ahluwalia, Harklrat S. Problems Associated With Slow Strain Rate Quality Assurance Testing of Nickel-Base Corrosion Resistant Alloy Tubulars in Hydrogen Sulfide Environments[A]. Slow Strain Rate Testing for the Evaluation of Environmentally Induced Cracking: Research and Engineering Applications[C]. Philadephia,1993: 225-239
[44]Ikeda A, Ueda M, Okamoto H. Role of Slow Strain Rate Testing on Evaluation of Corrosion Resistant Alloys for Hostile Hot Sour Gas Production[A]. Slow Strain Rate Testing for the Evaluation of Environmentally Induced Cracking: Research and Engineering Applications[C]. Philadelphia, 1993: 240-262
[45] Muizhnek I A. Accelerated corrosion cracking tests of steels in active-passive loading[J]. Soviet Mater. Sci., 1990,26(2): 168-171
[46] Payer J H, Berry W E, Parkins R N. Application of Slow Strain-Rate Technique to Stress Corrosion Cracking of Piping Steel[A]. Stress Corrosion Cracking: Slow Strain Rate Technique[C].Philadelphia, 1979: 222-234
[47] Kushida T, Koichi N, Asahi H, et al. Effects of Metallurgical Factors and Test Conditions on Near Neutral pH SCC of Pipeline Steels[A]. Corrosion/2001[C]. Houston, TX, NACE, 2001
[48] Zheng W L, Yu Q. Environment Sensitive Fracture of Steel[M]. Beijing: Chemical Industry Press, 1988
     (郑文龙,于青. 钢的环境敏感断裂[M]. 北京: 化学工业出版社, 1988)
[49] Devnathan M, Stachurski Z. A technique for the evaluation of hydrogen embrittlement characteristics of electroplating baths[J]. J. Electrochem. Soc., 1963, 110(8): 886
[50] Kushida T. Hydrogen entry into steel by atmospheric corrosion[J]. ISIJ Int., 2003, 43(4): 470-474
[51] Yoshiko T, Atsushi N, Tooru T. Effect of Wet and Dry Corrosion Cycles on Hydrogen Entry into Iron[A]. Proceedings of Japan-China Joint Seminar on Marine Corrosion[C]. Tokyo, 2002:183-186
[52] Nishimura R, Shiraishi D, Maeda Y. Hydrogen permeation and corrosion behavior of high strength steel MCM 430 in cyclic wet-dry SO2 environment[J]. Corros. Sci., 2004, 46(1): 225-243
[53] Huang Y L, Zhu Y Y. Hydrogen ion reduction in the process of iron rusting[J]. Corros. Sci., 2005, 47(6): 1545-1554
[54] Tooru T, Huang Y L, Rostom M A, et al. Hydrogen entry into steel during atmospheric corrosion process[J]. Corros. Sci.,2005, 47(10): 2431-2440
[55] Zheng C B, Huang Y L, Yu Q, et al. Hydrogen permeation behavior and corrosion monitoring of steel in cyclic wet-dry atmospheric environment[J]. Mater. Corros., 2007, 58(9): 716-720
 
[1] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[3] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[4] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[5] ZHAO Dongyang, ZHOU Yu, WANG Dongying, NA Duo. Effect of Phosphating on Hydrogen Embrittlement of SA-540 B23 Steel for Nuclear Reactor Coolant Pump Bolt[J]. 中国腐蚀与防护学报, 2020, 40(6): 539-544.
[6] ZHANG Qichao, HUANG Yanliang, XU Yong, YANG Dan, LU Dongzhu. Research Progress on Hydrogen Absorption and Embrittlement of Titanium and Its Alloy for High-level Nuclear Waste Container in Deep Geological Disposal Environment[J]. 中国腐蚀与防护学报, 2020, 40(6): 485-494.
[7] MA Mingwei, ZHAO Zhihao, JING Siwen, YU Wenfeng, GU Yien, WANG Xu, WU Ming. Corrosion Behavior of 17-4 PH Stainless Steel in Simulated Seawater Containing SRB[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[8] ZHOU Yu, ZHANG Haibing, DU Min, MA Li. Effect of Cathodic Potentials on Hydrogen Embrittlement of 1000 MPa Grade High Strength Steel in Simulated Deep-sea Environment[J]. 中国腐蚀与防护学报, 2020, 40(5): 409-415.
[9] ZHAO Baijie, FAN Yi, LI Zhenzhen, ZHANG Bowei, CHENG Xuequn. Crevice Corrosion Behavior of 316L Stainless Steel Paired with Four Different Materials[J]. 中国腐蚀与防护学报, 2020, 40(4): 332-341.
[10] ZHU Lixia, JIA Haidong, LUO Jinheng, LI Lifeng, JIN Jian, WU Gang, XU Congmin. Effect of Applied Potential on Stress Corrosion Behavior of X80 Pipeline Steel and Its Weld Joint in a Simulated Liquor of Soil at Lunnan Area of Xinjiang[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[11] ZHANG Zhen, WU Xinqiang, TAN Jibo. Review of Electrochemical Noise Technique for in situ Monitoring of Stress Corrosion Cracking[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[12] HU Yuting, DONG Pengfei, JIANG Li, XIAO Kui, DONG Chaofang, WU Junsheng, LI Xiaogang. Corrosion Behavior of Riveted Joints of TC4 Ti-Alloy and 316L Stainless Steel in Simulated Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[13] QIN Yueqiang, ZUO Yong, SHEN Miao. Corrosion Inhibition of 316L Stainless Steel in FLiNaK-CrF3/CrF2 Redox Buffering Molten Salt System[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[14] HE Zhuang,WANG Xingping,LIU Zihan,SHENG Yaoquan,MI Mengxin,CHEN Lin,ZHANG Yan,LI Yuchun. Passivation and Pitting of 316L and HR-2 Stainless Steel in Hydrochloric Acid Liquid Membrane Environment[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
[15] WU Dongcai,HAN Peide. Effects of Moderate Temperature Aging Treatment on Corrosion Resistance of SAF2304 DuplexStainless Steel[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
No Suggested Reading articles found!