Please wait a minute...
J Chin Soc Corr Pro  2011, Vol. 31 Issue (2): 130-134    DOI:
Research Articles Current Issue | Archive | Adv Search |
IN-SITU  IMPEDANCE INVESTIGATION OF 304 STAINLESS STEEL BETWEEN PIT GROWTH AND REPASSIVATION STATE
ZHANG Shenghan, TAN Yu, LIANG Kexin
School of Environmental Science and Engineering, North China Electric Power University, Baoding 071003
Download:  PDF(696KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Pitting corrosion investigations of 304 stainless steel in 0.1 mol/L sodium chloride borate buffer solution have been investigated by dynamic electrochemical impedance spectroscopy (DEIS). The electric equivalent circuit of the classic double-layer structure has been proposed to evaluate the changes of EIS data. According to the fitting results, the outer-layer of passive film of 304 stainless steel is highly destroyed during pitting process and can not return to the original condition. However, during repassivation process the inner-layer can be repassivated entirely. An active controlled model of film breakdown was proposed to analysis the film between the pit initiation and repassivation states.
Key words:  stainless steel      DEIS      pitting corrosion      passive films     
Received:  07 September 2010     
ZTFLH: 

TG174.36

 
Corresponding Authors:  TAN Yu      E-mail:  lucifertan@163.com

Cite this article: 

ZHANG Shenghan, TAN Yu, LIANG Kexin. IN-SITU  IMPEDANCE INVESTIGATION OF 304 STAINLESS STEEL BETWEEN PIT GROWTH AND REPASSIVATION STATE. J Chin Soc Corr Pro, 2011, 31(2): 130-134.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2011/V31/I2/130

[1] Buchler M, Schmuki P, Bohni H, et al. Comparison of the semiconductive properties of sputter-deposited iron oxides with the passive film on iron [J]. J. Electrochem. Soc, 1998, 145: 378-385

[2] Oltra R, Keddam M. Application of EIS to localized corrosion [J].Electrochim. Acta, 1990, 35: 1619-1629

[3] Oltra R, Keddam M. Application of impedance technique to localized corrosion [J]. Corros. Sci., 1988, 28: 1-5; 7-18

[4] Mansfeld F, Lin S, Kim S, et al. Pitting and passivation of Al alloys and Al-based metal matrix composites [J]. J.Electrochem. Soc., 1990, 137: 78-82

[5] Mansfeld F, Kendig M W. Evaluation of anodized aluminum surfaces with electrochemical impedance spectroscopy [J]. J. Electrochem. Soc., 1988, 135: 828-833

[6] Mansfeld F, Shih H. Detection of pitting with electrochemical impedance spectroscopy [J]. J. Electrochem.Soc., 1988, 135: 1171-1172

[7] Park J J, Pyun S. Pit formation and growth of alloy 600 in Cl- ion-containing thiosulphate solution at temperatures 298-573 K using fractal geometry [J]. Corros. Sci., 2003, 45: 995-1010

[8] Pistorius P C, Burstein G T.Growth of corrosion pits on stainless steel in chloride solution containing dilute sulphate [J]. Corros. Sci., 1992, 33: 1885-1887

[9] Williams D E, Stewart J, Balkwill P H. The nucleation, growth and stability of micropits in stainless steel [J].Corros. Sci., 1994. 36: l2l3-1235

[10] Pride S T, Scully J R, Hudson J L. Metastable pitting of aluminum and criteria for the transition to stable pit growth [J]. J. Electrochem. Soc., 1994, 41: 3028

[11] Laycock N J, Newman R C. Localised dissolution kinetics, salt films and pitting potentials [J]. Corros.Sci., 1997. 39: 1771-1790

[12] Liu Z J, Cheng X Q, Liu X H, et al. Calculation and analysis of diffusivity of point defects in passive film formed on 2205 duplex stainless steel and 316L austenitic stainless steel [J]. J. Chin. Soc.Corros. Prot., 2010, 30(4): 273-277

     (刘佐嘉, 程学群, 刘小辉等, 2205双相不锈钢与316L奥氏体不锈钢钝化膜内点缺陷扩散系数的计算分析 [J]. 中国腐蚀与防护学报,2010, 30(4): 273-277)

[13] Krakowiak S, Darowicki K, Sepski P. Impedance investigation of passive 304 stainless steel in the pit pre-initiation state [J]. Electrochim. Acta,2005, 50: 2699-2704

[14] Darowicki K, Krakowiak S, Sepski P. Evaluation of pitting corrosion by means of dynamic electrochemical impedance spectroscopy [J]. Eletrochim. Acta, 2004, 49: 2909-2918

[15] Hitzig J, Juttner K, Lorenz W J, et al. AC-impedance measurements on porous aluminium oxide films [J]. Corros.Sci., 1984, 24: 945-952

[16] Cabot P L, Garrido J A, Perez E, et al. EIS study of heat-treated Al-Zn-Mg alloys in the passive and transpassive potential regions [J]. Electrochim. Acta, 1995, 40: 447-454

[17] Chen L, Myung N, Sumodjo P T A, et al. A comparative electrodissolution and localized corrosion study of 2024Al in halide media [J]. Electrochim. Acta, 1999, 44: 2751-2764

[18] Gu B S, Liu J H, A research on pH during the procession of the Cerium(III) film formation of aluminum alloys by EIS [J]. J. Chin. Soc. Corros. Prot.,2010, 30(2): 124-128

     (顾宝珊, 刘建华, 电化学阻抗谱研究pH值对铝合金表面铈盐转化膜形成过程的影响 [J]. 中国腐蚀与防护学报, 2010,30(2): 124-128)

[19] Hong T, Walter G W, Nagumo M. The observation of the early stages of pitting on passivated type 304 stainless steel in a 0.5 M NaCl solution at low potentials in the passive region by using the AC impedance method [J].Corros. Sci., 1996, 38: 1525-1533

[20] Hong T, Nagumo M. The effect of chloride concentration on early stages of pitting for type 304 stainless steel revealed by the AC impedance method [J]. Corros. Sci.,1997, 39: 285-293

[21] Bastidas J M, Polo J L, Torres C L, et al. A study on the stability of AISI 316L stainless steel pitting corrosion through its transfer function [J]. Corros.Sci., 2001, 43: 269-281

[22] Wenger F, Cheriet S, Talhi B, et al. Electrochemical impedance of pits influence of the pit morphology [J].Corros. Sci., 1997, 39: 1239-1252

[23] Li N, Li Y, Wang S G, et al, Corrosion behavior of nanocrystallized bulk 304 stainless steel-the research on anti-chloride ion attack of the passive film [J]. J. Chin. Soc. Corros. Prot., 2007, 27(2): 80-83

     (李楠, 李瑛, 王胜刚等, 轧制纳米块体304不锈钢腐蚀行为的研究-钝化膜耐氯离子侵蚀能力 [J], 中国腐蚀与防护学报, 2007, 27(2): 80-83)

[24] Bastidas J M, Lopez M F, Gutierrez A, et al. Chemical analysis of passive films on type AISI 304 stainless steel using soft X-ray absorption spectroscopy [J]. Corros. Sci., 1998, 40: 43-438

[25] CarmezimaM J, Simoesb A M, Montemorb M F, et al. Capacitance behavior of passive films on ferritic and austenitic stainless steel [J]. Corros. Sci. 2005, 47: 581-591

[26] Perez F J, Gutierrezb A A, Lopezc M F, et al. Surface modification of ion-implanted AISI 304 stainless steel after oxidation process: X-ray absorption spectroscopy analysis [J]. Thin Solid Films.,2002, 415: 258-265

[27] Hitzig J, Juttner K, Lorenz W J, et al. AC-impedance measurements on corroded porous aluminum oxide films [J].J. Electrochem. Soc., 1986, 133: 887-892

[28] Juttner K, Lorenz W J, Paatsh W, et al. The role of surface inhomogeneities in corrosion processes-electrochemical impedance spectroscopy (EIS) on different aluminum oxide films [J]. Corros. Sci., 1989, 29: 279-288

[29] Chao C Y, Lin L F, MacDonald D D, et al. A point defect model for anodic passive films [J]. J. Electrochem. Soc.,1981, 128: 1187-1194

[30] Park J R, MacDonald D D. Impedance studies of the growth of porous magnetite films on carbon steel in high temperature aqueous systems [J]. Corros. Sci., 1983, 23: 295-315

[31] Isaacs H S. The behavior of resistive layers in the localized corrosion of stainless steel [J]. J.Electrochem. Soc., 1977, 120: 1456-1462

[32] Mankowski J, Szklarska-Smialowska Z. The effect of specimen position on the shape of corrosion pits in an austenitic stainless steel [J]. Corros. Sci., 1977, 17: 725-735\par
[1] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[3] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[4] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[5] MA Mingwei, ZHAO Zhihao, JING Siwen, YU Wenfeng, GU Yien, WANG Xu, WU Ming. Corrosion Behavior of 17-4 PH Stainless Steel in Simulated Seawater Containing SRB[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[6] YU Haoran, ZHANG Wenli, CUI Zhongyu. Difference in Corrosion Behavior of Four Mg-alloys in Cl--NH4+-NO3- Containing Solution[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[7] DAI Mingjie, LIU Jing, HUANG Feng, HU Qian, LI Shuang. Pitting Corrosion Behavior of X100 Pipeline Steel in a Simulated Acidic Soil Solution under Fluctuated Cathodic Protection Potentials Based on Orthogonal Method[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[8] ZHANG Xin, YANG Guangheng, WANG Zehua, CAO Jing, SHAO Jia, ZHOU Zehua. Corrosion Behavior of Al-Mg-RE Alloy Wires Subjected to Different Cold Drawing Deformation[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[9] HE San, SUN Yinjuan, ZHANG Zhihao, CHENG Jie, QIU Yunpeng, GAO Chaoyang. Corrosion Behavior of 20# Steel in Alkanolamine Solution Mixed with Ionic Liquid Containing Saturated CO2[J]. 中国腐蚀与防护学报, 2020, 40(4): 309-316.
[10] ZHAO Baijie, FAN Yi, LI Zhenzhen, ZHANG Bowei, CHENG Xuequn. Crevice Corrosion Behavior of 316L Stainless Steel Paired with Four Different Materials[J]. 中国腐蚀与防护学报, 2020, 40(4): 332-341.
[11] LI Qing, ZHANG Deping, WANG Wei, WU Wei, LU Lin, AI Chi. Evaluation of Actual Corrosion Status of L80 Tubing Steel and Subsequent Electrochemical and SCC Investigation in Lab[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[12] HU Yuting, DONG Pengfei, JIANG Li, XIAO Kui, DONG Chaofang, WU Junsheng, LI Xiaogang. Corrosion Behavior of Riveted Joints of TC4 Ti-Alloy and 316L Stainless Steel in Simulated Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[13] QIN Yueqiang, ZUO Yong, SHEN Miao. Corrosion Inhibition of 316L Stainless Steel in FLiNaK-CrF3/CrF2 Redox Buffering Molten Salt System[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[14] HE Zhuang,WANG Xingping,LIU Zihan,SHENG Yaoquan,MI Mengxin,CHEN Lin,ZHANG Yan,LI Yuchun. Passivation and Pitting of 316L and HR-2 Stainless Steel in Hydrochloric Acid Liquid Membrane Environment[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
[15] WU Dongcai,HAN Peide. Effects of Moderate Temperature Aging Treatment on Corrosion Resistance of SAF2304 DuplexStainless Steel[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
No Suggested Reading articles found!