Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2026, Vol. 46 Issue (1): 71-80    DOI: 10.11902/1005.4537.2025.133
Current Issue | Archive | Adv Search |
Comparative Characterization of Microstructure and High-temperature Oxidation Behavior of Additive Manufacturing and Casting TiAl Alloy
ZHU Dingding, ZHAO Xiya, ZHANG Xiaomei, MEI Ziqi, LU Wenjun, WANG Shuai()
Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
Cite this article: 

ZHU Dingding, ZHAO Xiya, ZHANG Xiaomei, MEI Ziqi, LU Wenjun, WANG Shuai. Comparative Characterization of Microstructure and High-temperature Oxidation Behavior of Additive Manufacturing and Casting TiAl Alloy. Journal of Chinese Society for Corrosion and protection, 2026, 46(1): 71-80.

Download:  HTML  PDF(23327KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The microstructure and high-temperature oxidation resistance of two TiAl based Ti-43.5Al-4Nb-1Mo-0.1B alloys with addition of Nb and Mo (TNM) are comparatively assessed, which are prepared by casting and laser-electric hybrid additive-manufacturing (AM) respectively. Microstructural analysis indicates that: the cast TNM alloy is mainly composed of coarse lamellar α2-Ti3Al + γ-TiAl structureand a small amount of β0-TiAl phase, with an average grain size of 15.56 μm; while the AM alloy is mainly composed of basket-weave α2-Ti3Al + fine γ-TiAl and a small amount of β0-TiAl, and the grain size is significantly refined to 2.45 μm. The 900 °C oxidation test shows that the oxidation rate of the AM TNM alloy is higher than that of the cast ones, and a protective Z-phase (Ti5Al3O2) is formed at the oxide layer/matrix interface of the cast alloy after oxidation for 20 h. The difference in oxidation behavior between the two alloys may be mainly attributed to: the fine-grained structure of the AM alloy generates a high density of grain boundaries, accelerating the outward diffusion of metal ions in the matrix and the inward diffusion of oxygen; compared with the cast ones, the AM alloy cannot form a protective Z-phase at the oxide scale/matrix interface, which aggravates the oxidation rate of the alloy.

Key words:  additive manufacturing      TiAl alloy      high-temperature oxidation      Z-phase     
Received:  02 May 2025      32134.14.1005.4537.2025.133
ZTFLH:  TG174  
Fund: National Key Research and Development Program of China(2022YFB4600700);Shenzhen Science and Technology Innovation Commission(KJZD20240903101400001);Development and Reform Commission of Shenzhen Municipality(XMHT20240115003);China Postdoctoral Science Foundation(2024M761298)

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2025.133     OR     https://www.jcscp.org/EN/Y2026/V46/I1/71

Fig.1  Schematic diagram of the laser-electropulse hybrid additive manufacturing process for TNM TiAl alloy
MaterialsTiAlNbMoB
Powder48.8042.657.191.170.20
AM specimen50.3241.896.541.180.13
Table 1  Comparative analysis of chemical compositions in specimens before and after additive manufacturing
Fig.2  EBSD characterization of cast (a-c) and AM (d-f) TNM sample: (a, d) image quality (IQ) map, (b, e) inverse pole figure (IPF) map, (c, f) phase distribution
Fig.3  Microstructural characterization of cast (a-e) and AM (f-j) TNM sample: (a) HAADF-STEM image of cast TNM, (b) HRTEM image, (c, d) FFTs images, (e) SAED image, (f) BF-STEM image of AM TNM, (g) high-magnification HAADF-STEM image, (h) HRTEM image, (i, j) FFTs images
Fig.4  Surface SEM morphology of cast and AM TNM alloys after oxidation in air at 900 oC (dA: average oxide grain size for each condition): (a-f) morphology of cast TNM oxidized for different time, (g-l) morphology of AM TNM oxidized for different time
Fig.5  Cross-sectional SEM and TEM micrographs of cast and AM TNM alloys after oxidation in air at 900 oC (scale bars consistent; red dashed lines denote the oxide/substrate interface): (a-d) cast TNM oxidized for 1, 8, 24 and 48 h, (e-h) AM TNM oxidized for 1, 8, 24 and 48 h, (i) HAADF-STEM image of the oxide layer formed on the cast TNM alloy after 1 h of oxidation, (j-l) corresponding EDS Ti, Al and O elemental maps of the region depicted in Fig.5i
Fig.6  Oxidation kinetic curves showing the changes of cross-sectional oxide layer thickness (a) and oxidation mass gain with time (b) for additively manufactured and cast TNM alloys after oxidation at 900 oC (The error bars represent the standard deviation uncertainty based on multiple measurements, and the solid lines are the fitting results of the parabolic equation)
Fig.7  SEM-BSE images of the oxide scale/matrix interfaces for cast (a, b) and AM (c, d) TNM alloy after 24 (a, c) and 48 h (b, d) oxidation (the inset in Fig.b displays the electron diffraction pattern of the Z-phase along the [001] zone axis)
AlloysTiAl
Cast TNM51.530.4
AM TNM25.218.5
Table 2  Chemical compositions of the local areas shown in Fig.7 (red dot regions) for the cast and AM TNM alloys after oxidation at 900 oC for 24 h
[1] Yan H J, Yin R Z, Wang W J, et al. Cyclic oxidation behavior of TiAl alloy with electrodeposited SiO2 coating [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 81
严豪杰, 殷若展, 汪文君 等. TiAl合金表面电沉积SiO2涂层抗循环氧化性能研究 [J]. 中国腐蚀与防护学报, 2025, 45: 81
doi: 10.11902/1005.4537.2024.246
[2] Zhao Z Q, Yi M, Guo W L, et al. General-purpose neural network potential for Ti-Al-Nb alloys towards large-scale molecular dynamics with ab initio accuracy [J]. Phys. Rev. B, 2024, 110: 184115
doi: 10.1103/PhysRevB.110.184115
[3] Dimiduk D M. Gamma titanium aluminide alloys—An assessment within the competition of aerospace structural materials [J]. Mater. Sci. Eng., 1999, 263A: 281
[4] Duan B H, Yang Y C, He S Y, et al. History and development of γ-TiAl alloys and the effect of alloying elements on their phase tra-nsformations [J]. J. Alloy. Compd., 2022, 909: 164811
doi: 10.1016/j.jallcom.2022.164811
[5] Yamaguchi M. High temperature intermetallics-with particular emphasis on TiAl [J]. Mater. Sci. Technol., 1992, 8: 299
doi: 10.1179/mst.1992.8.4.299
[6] Wu X H. Review of alloy and process development of TiAl alloys [J]. Intermetallics, 2006, 14: 1114
doi: 10.1016/j.intermet.2005.10.019
[7] Perrut M, Caron P, Thomas M, et al. High temperature materials for aerospace applications: Ni-based superalloys and γ-TiAl alloys [J]. Comptes Rendus Phys., 2018, 19: 657
doi: 10.1016/j.crhy.2018.10.002
[8] Herzog D, Seyda V, Wycisk E, et al. Additive manufacturing of metals [J]. Acta Mater., 2016, 117: 371
doi: 10.1016/j.actamat.2016.07.019
[9] Soliman H A, Elbestawi M. Titanium aluminides processing by additive manufacturing-a review [J]. Int. J. Adv. Manuf. Technol., 2022, 119: 5583
doi: 10.1007/s00170-022-08728-w
[10] Huang D N, Tan Q Y, Zhou Y H, et al. The significant impact of grain refiner on γ-TiAl intermetallic fabricated by laser-based additive manufacturing [J]. Addit. Manuf., 2021, 46: 102172
[11] Gao P, Wang Z M, Zeng X Y. Effect of process parameters on morphology, sectional characteristics and crack sensitivity of Ti-40Al-9V-0.5Y alloy single tracks produced by selective laser melting [J]. Int. J. Lightweight Mater. Manuf., 2019, 2: 355
[12] Löber L, Schimansky F P, Kühn U, et al. Selective laser melting of a beta-solidifying TNM-B1 titanium aluminide alloy [J]. J. Mater. Process. Technol., 2014, 214: 1852
doi: 10.1016/j.jmatprotec.2014.04.002
[13] Shi X Z, Ma S Y, Liu C M, et al. Parameter optimization for Ti-47Al-2Cr-2Nb in selective laser melting based on geometric characteristics of single scan tracks [J]. Opt. Laser Technol., 2017, 90: 71
doi: 10.1016/j.optlastec.2016.11.002
[14] Conrad H, Sprecher Jr A F, Cao W D, et al. Electroplasticity—the effect of electricity on the mechanical properties of metals [J]. JOM, 1990, 42: 28
[15] Li X, Zhu Q, Hong Y R, et al. Revealing the pulse-induced electroplasticity by decoupling electron wind force [J]. Nat. Commun., 2022, 13: 6503
doi: 10.1038/s41467-022-34333-2 pmid: 36316328
[16] Conrad H. Electroplasticity in metals and ceramics [J]. Mater. Sci. Eng., 2000, 287A: 276
[17] Li H, Jin F Z, Zhang M Y, et al. Decoupling electroplasticity by temporal coordination design of pulse current loading and straining [J]. Mater. Sci. Eng., 2023, 881A: 145435
[18] Zhuang Z T, Yan H J, Xie B, et al. High-temperature oxidation behavior of Ti45Al8.5Nb alloy via liquid-phase fluorination treatment [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 1517
庄钊涛, 严豪杰, 谢 冰 等. 液相氟化处理Ti45Al8.5Nb合金高温氧化行为研究 [J]. 中国腐蚀与防护学报, 2025, 45: 1517
doi: 10.11902/1005.4537.2025.040
[19] Wu L L, Yin R Z, Chen Z X, et al. Preparation and high temperature oxidation resistance of Zr-SiO2 composite coating on Ti45Al8.5-Nb alloy [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1423
吴亮亮, 殷若展, 陈朝旭 等. Ti45Al8.5Nb合金表面Zr-SiO2复合涂层的制备及其抗高温氧化性能研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1423
doi: 10.11902/1005.4537.2024.004
[20] Sun T L, Guo Z C, Cao J, et al. Isothermal oxidation behavior of high-Nb-containing TiAl alloys doped with W, B, Y, and C/Si [J]. Corros. Sci., 2023, 213: 110980
doi: 10.1016/j.corsci.2023.110980
[21] Yan H J, Xia J J, Wu L K, et al. Hot corrosion behavior of Ti45Al8.5-Nb alloy: Effect of anodization and pre-oxidation [J]. Acta Metall. Sin. (Engl. Lett.), 2022, 35: 1531
doi: 10.1007/s40195-022-01380-z
[22] Zhang X Y, Li C W, Wu M H, et al. Atypical pathways for lamellar and twinning transformations in rapidly solidified TiAl alloy [J]. Acta Mater., 2022, 227: 117718
doi: 10.1016/j.actamat.2022.117718
[23] Chen Y Y, Shi G H, Du Z M, et al. Research progress on additive manufacturing TiAl alloy [J]. Acta Metall. Sin., 2024, 60: 1
doi: 10.11900/0412.1961.2022.00582
陈玉勇, 时国浩, 杜之明 等. 增材制造TiAl合金的研究进展 [J]. 金属学报, 2024, 60: 1
doi: 10.11900/0412.1961.2022.00582
[24] Di S X, Ou B Y, Li W, et al. Research on high-temperature oxidation resistance behavior of TNM titanium aluminum alloy [J]. Chin. J. Eng., 2024, 46: 1826
邸士雄, 欧白羽, 李 维 等. TNM钛铝合金高温抗氧化行为研究 [J]. 工程科学学报, 2024, 46: 1826
[25] Lang C, Schütze M. TEM investigations of the early stages of TiAl oxidation [J]. Oxid. Met., 1996, 46: 255
doi: 10.1007/BF01050799
[26] Lang C, Schütze M. The initial stages in the oxidation of TiAl [J]. Mater. Corros., 1997, 48: 13
[27] Xu C, Zhu M H, Guan H H, et al. Improvement of steam oxidation resistance of the γ-TiAl alloy with microarc oxidation coatings at 900-1200 oC [J]. Corros. Sci., 2022, 209: 110711
doi: 10.1016/j.corsci.2022.110711
[28] Chu M S, Wu S K. The improvement of high temperature oxidation of Ti-50Al by sputtering Al film and subsequent interdiffusion treatment [J]. Acta Mater., 2003, 51: 3109
doi: 10.1016/S1359-6454(03)00123-X
[29] Zhu D D, Wang X L, Zhao J, et al. Effect of water vapor on high-temperature oxidation of NiAl alloy [J]. Corros. Sci., 2020, 177: 108963
doi: 10.1016/j.corsci.2020.108963
[30] Zhu D D, Wang X L, Jia P, et al. One-dimensional γ-Al2O3 growth from the oxidation of NiAl [J]. Corros. Sci., 2023, 216: 111069
doi: 10.1016/j.corsci.2023.111069
[31] Swadźba R, Laska N, Bauer P P, et al. Effect of pre-oxidation on cyclic oxidation resistance of γ-TiAl at 900 oC [J]. Corros. Sci., 2020, 177: 108985
doi: 10.1016/j.corsci.2020.108985
[32] Cheng Y F, Dettenwanger F, Mayer J, et al. Identification of a new phase formed during the oxidation of γ-tttanium aluminum [J]. Scr. Mater., 1996, 34: 707
doi: 10.1016/1359-6462(95)00552-8
[33] Dettenwanger F, Schumann E, Ruhle M, et al. Microstructural study of oxidized γ-TiAl [J]. Oxid. Met., 1998, 50: 269
doi: 10.1023/A:1018892422121
[34] Shemet V, Hoven H, Quadakkers W J. Oxygen uptake and depletion layer formation during oxidation of γ-TiAl based alloys [J]. Intermetallics, 1997, 5: 311
doi: 10.1016/S0966-9795(96)00093-3
[35] Prescott R, Graham M J. The formation of aluminum oxide scales on high-temperature alloys [J]. Oxid. Met., 1992, 38: 233
doi: 10.1007/BF00666913
[36] Shemet V, Karduck P, Hoven H, et al. Synthesis of the cubic Z-phase in the Ti-Al-O system by a powder metallurgical method [J]. Intermetallics, 1997, 5: 271
doi: 10.1016/S0966-9795(96)00091-X
[37] Chepak-Gizbrekht M V, Knyazeva A G. Oxidation of TiAl alloy by oxygen grain boundary diffusion [J]. Intermetallics, 2023, 162: 107993
doi: 10.1016/j.intermet.2023.107993
[38] Fisher J C. Calculation of diffusion penetration curves for surface and grain boundary diffusion [J]. J. Appl. Phys., 1951, 22: 74
doi: 10.1063/1.1699825
[39] Ding R, Yao Y J, Sun B H, et al. Chemical boundary engineering: A new route toward lean, ultrastrong yet ductile steels [J]. Sci. Adv., 2020, 6: eaay1430
doi: 10.1126/sciadv.aay1430
[40] Copland E H, Gleeson B, Young D J. Formation of Z-Ti50Al30O20 in the sub-oxide zones of γ-TiAl-based alloys during oxidation at 1000 oC [J]. Acta Mater., 1999, 47: 2937
doi: 10.1016/S1359-6454(99)00169-X
[1] LAN Botao, WU Bin, MING Hongliang, WANG Jianqiu, HAN En-Hou. Research Progress of Stress Corrosion Crack Behavior of Selected Laser Melted Austenitic Stainless Steel in High Temperature Pressurized Water[J]. 中国腐蚀与防护学报, 2026, 46(1): 1-14.
[2] DAI Nianwei, DOU Xinyi, LIU Huajian, LENG Bin. Research Progress on Corrosion of Additively Manufactured Alloys Applied in Nuclear Energy Field[J]. 中国腐蚀与防护学报, 2026, 46(1): 15-24.
[3] ZHOU Li, CAO Xiaodie, LAI Youbin, DING Wangwang, WEI Boxin, WU Jiajun. Research Progress in Influence of Heat Treatment on Corrosion Behavior of Additive Manufactured Parts[J]. 中国腐蚀与防护学报, 2026, 46(1): 37-48.
[4] YI Junda, LENG Ao, GONG Delun, WEI Boxin. Microstructureand Properties of Low Modulus Corrosion-resistant Metastable β-Ti Alloy Prepared by Electron Beam Melting[J]. 中国腐蚀与防护学报, 2026, 46(1): 49-59.
[5] ZHANG Junnan, PENG Can, FU Qi, ZHANG Liang, SONG Guangling. Influence of Pseudomonas Aeruginosa on Corrosion Behavior of Additively Manufactured Al-Mg-Sc-Zr Alloy in Marine Environment[J]. 中国腐蚀与防护学报, 2026, 46(1): 60-70.
[6] LI Kexuan, WANG Yipeng, LIAO Bokai. Comparative Study on Passive Behavior of Wire Arc Additive Manufactured, Selective Laser Melted, and Conventional TC4 Ti-alloys[J]. 中国腐蚀与防护学报, 2026, 46(1): 186-192.
[7] ZHUANG Zhaotao, YAN Haojie, XIE Bing, GUI Ye, SUN Qingqing, WU Liankui, CAO Fahe. High-temperature Oxidation Behavior of Liquid-phase Fluorination Treated Ti45Al8.5Nb Alloy[J]. 中国腐蚀与防护学报, 2025, 45(6): 1517-1527.
[8] YE Jun, LUO Xin, ZHEN Xiansheng, LI Xinping, XIE Yun, PENG Xiao. Corrosion Behavior of Inconel 718 Alloy Without and with a Pre-deposits Film of Salts Mixture at 750 oC in Different Atmospheres[J]. 中国腐蚀与防护学报, 2025, 45(6): 1528-1536.
[9] HE Wuhao, LIU Yang, YANG Siyi, ZHANG Shaodong, WU Wei, ZHANG Junxi. Effect of Sensitization Treatment on Electrochemical Behavior and Intergranular Corrosion of Conventional and Additively Manufactured 316L Stainless Steels[J]. 中国腐蚀与防护学报, 2025, 45(5): 1331-1340.
[10] LEI Tao, CHEN Shaogao, LIU Xiuli, FAN Jinlong, ZHENG Xingwen. Corrosion Behavior of Laser Additive Manufacturing AlSi10Mg Al-alloy in Ethylene Glycol Coolant and Detection of Coolant Degradation[J]. 中国腐蚀与防护学报, 2025, 45(4): 1014-1024.
[11] ZHANG Han, LIU Xuanzhen, HUANG Aihui, ZHAO Xiaofeng, LU Jie. Manufacturing and Research Progress in Metallic Bond Coats for Thermal Barrier Coatings[J]. 中国腐蚀与防护学报, 2025, 45(1): 20-32.
[12] YAN Haojie, YIN Ruozhan, WANG Wenjun, SUN Qingqing, WU Liankui, CAO Fahe. Cyclic Oxidation Behavior of TiAl Alloy with Electrodeposited SiO2 Coating[J]. 中国腐蚀与防护学报, 2025, 45(1): 81-91.
[13] PEI Haiqing, XIAO Jingbo, LI Wei, YU Haoyu, WEN Zhixun, YUE Zhufeng. First Principles Study on Effect of Al-O Element Aggregation on Oxidation of a Ni-based Single Crystal Superalloy[J]. 中国腐蚀与防护学报, 2025, 45(1): 173-181.
[14] ZHANG Caiyun, LI Shuai, BAO Zebin, ZHU Shenglong, WANG Fuhui. Stripping and Refurbishment of (Ni, Pt)Al Coating After Service for Different Oxidation Durations[J]. 中国腐蚀与防护学报, 2025, 45(1): 201-208.
[15] CHEN Hui, XU Fubin, FANG Yaxiong, ZHU Zhongliang. Oxidation Behavior of Super304H Stainless Steel in Supercritical Water at 605 and 640 oC[J]. 中国腐蚀与防护学报, 2025, 45(1): 209-216.
No Suggested Reading articles found!