Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2026, Vol. 46 Issue (1): 60-70    DOI: 10.11902/1005.4537.2025.189
Current Issue | Archive | Adv Search |
Influence of Pseudomonas Aeruginosa on Corrosion Behavior of Additively Manufactured Al-Mg-Sc-Zr Alloy in Marine Environment
ZHANG Junnan1, PENG Can2(), FU Qi1(), ZHANG Liang2, SONG Guangling1()
1.Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
2.Institute of Intelligent Manufacturing Technology, Shenzhen Polytechnic University, Shenzhen 518055, China
Cite this article: 

ZHANG Junnan, PENG Can, FU Qi, ZHANG Liang, SONG Guangling. Influence of Pseudomonas Aeruginosa on Corrosion Behavior of Additively Manufactured Al-Mg-Sc-Zr Alloy in Marine Environment. Journal of Chinese Society for Corrosion and protection, 2026, 46(1): 60-70.

Download:  HTML  PDF(15543KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A bulk Al-Mg-Sc-Zr alloy was fabricated by using selective laser melting (SLM) technique. Then its corrosion behavior of the alloy was investigated by immersion in Pseudomonas aeruginosa (P. aeruginosa) inoculated artificial seawater for 14 d, meanwhile the distribution of P. aeruginosa on the alloy surface was observed via fluorescence microscopy, and the trend in cell population changes was statistically analyzed. The corrosion behavior and mechanism of the alloy in both sterile and inoculated environments were investigated through electrochemical tests, scanning electron microscopy (SEM), white light interferometry, and X-ray photoelectron spectroscopy (XPS). The results demonstrated that the Al-Mg-Sc-Zr alloy exhibited excellent corrosion resistance in the sterile group, with virtually no observable pitting on the surface. In contrast, in the inoculated group, P. aeruginosa could adhere to the alloy surface and induced severe localized corrosion. P. aeruginosa could extract electrons from Al and Mg elements to sustain its metabolic activities, while oxygen concentration cells were formed inside the heterogeneous biofilm, significantly exacerbating the development of localized corrosion and reducing the corrosion stability of the alloy.

Key words:  additive manufacturing      Al-alloy      Pseudomonas aeruginosa      microbiologically influenced corrosion     
Received:  17 June 2025      32134.14.1005.4537.2025.189
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(52250710159);China Postdoctoral Science Foundation(2024M751292)

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2025.189     OR     https://www.jcscp.org/EN/Y2026/V46/I1/60

Fig.1  Schematic diagram of forming process for the Al-Mg-Sc-Zr alloy
Fig.2  Metallographic images (a, b) and SEM secondary electron images (c, d) of the Al-Mg-Sc-Zr alloy
Fig.3  Changes in pH value and cell counts of the test solution (a) and fluorescence images of P. aeruginosa cells on the Al-Mg-Sc-Zr alloy surfaces (b)
Fig.4  OCP values (a) and Nyquist diagrams of the Al-Mg-Sc-Zr alloy in the sterile (b) and inoculated media (c), and the Rct + Rf values of the Al-Mg-Sc-Zr alloy from curve-fitting of the EIS spectra (d), and equivalent circuit models used for curve-fitting of the EIS spectra displayed in Fig.4b and Fig.4c during the 14 d experiment
Conditiont / dRs / Ω·cm2Qf / 10-6 S·cm-2·s nRf / 103 Ω·cm2Qdl / 10-6 S·cm-2·s nRct / 103 Ω·cm2
Control18.3887.13612.210.500767.1
38.6976.5166.6240.79512360
58.7417.1685.1291.088998.6
78.4259.3026.4810.875485.3
108.70215.173.3840.826614.9
148.66414.592.3801.0001834
P. aeruginosa17.52311.3533.301.34842.66
38.0149.8170.02046.085171.5
58.3869.7040.03456.827243.6
78.2929.5270.03497.767238
108.52410.5000.04428.158386.6
148.48512.550.05897.692791.3
Table 1  Electrochemical parameters derived from the EIS spectra for the Al-Mg-Sc-Zr alloy in the abiotic and biotic media
Fig.5  Potentiodynamic polarization curves of Al-Mg-Sc-Zr alloy after 14 d of immersion in the sterile and inoculated media
ConditionEcorr vs. SCE / VIcorr / 10-8 A·cm-2
Control-1.0982.08
NRB-1.1476.78
Table 2  Relative electrochemical parameters of Al-Mg-Sc-Zr alloy calculated from potentiodynamic polarization curves after 14 d of testing
Fig.6  Morphologies of surface films: (a, b) SEM images and (b1, b2) EDS mapping results from (b) after 14 d of immersion in the sterile media; (c, d) SEM images and (d1-d6) EDS mapping results from (d) after 14 d of immersion in the inoculated media
Fig.7  2D and 3D color images of the Al-Mg-Sc-Zr alloy surfaces after removal of corrosion products in the sterile medium (a) and in the inoculated medium (b)
Fig.8  High-resolution XPS spectra Al 2p (a1), Mg 1s (a2), N 1s (a3) and P 2p (a4) for Al-Mg-Sc-Zr alloy in the sterile medium; Al 2p (b1), Mg 1s (b2), N 1s (b3) and P 2p (b4) for Al-Mg-Sc-Zr alloy in the inoculated medium
Fig.9  Schematic diagram of P. aeruginosa induced corrosion of Al-Mg-Sc-Zr alloy
[1] Song X W, Bai M M, Chen N N, et al. Effect of Aspergillus aculeatus on corrosion behavior of 5A02 Al-alloy in coastal atmospheric environment of Hainan Island [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 631
宋晓稳, 白苗苗, 陈娜娜 等. 海南滨海大气环境中棘孢曲霉对铝合金腐蚀行为影响 [J]. 中国腐蚀与防护学报, 2025, 45: 631
doi: 10.11902/1005.4537.2024.191
[2] Xia D H, Ji Y Y, Mao Y C, et al. Localized corrosion mechanism of 2024 aluminum alloy in a simulated dynamic seawater/air interface [J]. Acta Metall. Sin., 2023, 59: 297
doi: 10.11900/0412.1961.2022.00196
夏大海, 计元元, 毛英畅 等. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制 [J]. 金属学报, 2023, 59: 297
doi: 10.11900/0412.1961.2022.00196
[3] Duan T G, Li Z, Peng W S, et al. Corrosion characteristics of 5A06 Al-alloy exposed in natural deep-sea environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 352
段体岗, 李 祯, 彭文山 等. 深海环境5A06铝合金腐蚀行为与表面特性 [J]. 中国腐蚀与防护学报, 2023, 43: 352
doi: 10.11902/1005.4537.2022.102
[4] Deng C M, Liu Z, Xia D H, et al. Localized corrosion mechanism of 5083-H111 Al alloy in simulated dynamic seawater zone [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 683
邓成满, 刘 喆, 夏大海 等. 5083-H111铝合金在模拟动态海水环境中的局部腐蚀机制 [J]. 中国腐蚀与防护学报, 2023, 43: 683
doi: 10.11902/1005.4537.2023.140
[5] Luo B H, Bai Z H. Development of high-performance aluminum alloys [J]. Ordn. Mater. Sci. Eng., 2002, 25: 59
罗兵辉, 柏振海. 高性能铝合金研究进展 [J]. 兵器材料科学与工程, 2002, 25: 59
[6] Zhang X M, Deng Y L, Zhang Y. Development of high strength aluminum alloys and processing techniques for the materials [J]. Acta Metall. Sin., 2015, 51: 257
doi: 10.11900/0412.1961.2014.00406
张新明, 邓运来, 张 勇. 高强铝合金的发展及其材料的制备加工技术 [J]. 金属学报, 2015, 51: 257
doi: 10.11900/0412.1961.2014.00406
[7] Zhang X M, Liu S D. Aerocraft aluminum alloys and their materials processing [J]. Mater. China, 2013, 32: 39
张新明, 刘胜胆. 航空铝合金及其材料加工 [J]. 中国材料进展, 2013, 32: 39
[8] Dursun T, Soutis C. Recent developments in advanced aircraft aluminium alloys [J]. Mater. Des., 2014, 56: 862
doi: 10.1016/j.matdes.2013.12.002
[9] Lin X, Huang W D. Laser additive manufacturing of high-performance metal components [J]. Sci. China Inf. Sci., 2015, 45: 1111
林 鑫, 黄卫东. 高性能金属构件的激光增材制造 [J]. 中国科学: 信息科学, 2015, 45: 1111
[10] Wang H M. Materials' fundamental issues of laser additive manufacturing for high-performance large metallic components [J]. Acta Aeronaut. Astronaut. Sin., 2014, 35: 2690
王华明. 高性能大型金属构件激光增材制造: 若干材料基础问题 [J]. 航空学报, 2014, 35: 2690
doi: 10.7527/S1000-6893.2014.0174
[11] Gu D D, Meiners W, Wissenbach K, et al. Laser additive manufacturing of metallic components: Materials, processes and mechanisms [J]. Int. Mater. Rev., 2012, 57: 133
doi: 10.1179/1743280411Y.0000000014
[12] Herzog D, Seyda V, Wycisk E, et al. Additive manufacturing of metals [J]. Acta Mater., 2016, 117: 371
doi: 10.1016/j.actamat.2016.07.019
[13] Yan H, Wang S X, Li X F, et al. Study on the friction and wear properties of selective laser melted Al-Cu-Mg alloy [J]. Powder Metall. Ind., 2023, 33(1): 17
闫 浩, 王世鑫, 李晓峰 等. SLM成形Al-Cu-Mg合金的摩擦磨损性能 [J]. 粉末冶金工业, 2023, 33(1): 17
[14] Li R D, Wang M B, Yuan T C, et al. Selective laser melting of a novel Sc and Zr modified Al-6.2 Mg alloy: Processing, microstructure, and properties [J]. Powder Technol., 2017, 319: 117
doi: 10.1016/j.powtec.2017.06.050
[15] Spierings A B, Dawson K, Kern K, et al. SLM-processed Sc- and Zr-modified Al-Mg alloy: Mechanical properties and microstructural effects of heat treatment [J]. Mater. Sci. Eng., 2017, 701A: 264
[16] Yang K V, Shi Y J, Palm F, et al. Columnar to equiaxed transition in Al-Mg(-Sc)-Zr alloys produced by selective laser melting [J]. Scr. Mater., 2018, 145: 113
doi: 10.1016/j.scriptamat.2017.10.021
[17] Wang M B, Li R D, Yuan T C, et al. Microstructures and mechanical property of AlMgScZrMn-a comparison between selective laser melting, spark plasma sintering and cast [J]. Mater. Sci. Eng., 2019, 756A: 354
[18] Qi P, Zeng Y, Zhang D, et al. The biofilm-metal interface: A hotspot for microbiologically influenced corrosion [J]. Cell Rep. Phys. Sci., 2025, 6: 102500
[19] Arroussi M, Jia Q, Bai C G, et al. Inhibition effect on microbiologically influenced corrosion of Ti-6Al-4V-5Cu alloy against marine bacterium Pseudomonas aeruginosa [J]. J. Mater. Sci. Technol., 2022, 109: 282
doi: 10.1016/j.jmst.2021.08.084
[20] Xu D K, Xia J, Zhou E Z, et al. Accelerated corrosion of 2205 duplex stainless steel caused by marine aerobic Pseudomonas aeruginosa biofilm [J]. Bioelectrochemistry, 2017, 113: 1
doi: 10.1016/j.bioelechem.2016.08.001
[21] Xu D K, Zhou E Z, Zhao Y, et al. Enhanced resistance of 2205 Cu-bearing duplex stainless steel towards microbiologically influenced corrosion by marine aerobic Pseudomonas aeruginosa biofilms [J]. J. Mater. Sci. Technol., 2018, 34: 1325
doi: 10.1016/j.jmst.2017.11.025
[22] Zhu L Y, Wu J J, Zhang D, et al. Influence of the α fraction on 2205 duplex stainless steel corrosion affected by Pseudomonas aeruginosa [J]. Corros. Sci., 2021, 193: 109877
doi: 10.1016/j.corsci.2021.109877
[23] Huang L Y, Chang W W, Zhang D W, et al. Acceleration of corrosion of 304 stainless steel by outward extracellular electron transfer of Pseudomonas aeruginosa biofilm [J]. Corros. Sci., 2022, 199: 110159
doi: 10.1016/j.corsci.2022.110159
[24] Qian H C, Chang W W, Liu W L, et al. Investigation of microbiologically influenced corrosion inhibition of 304 stainless steel by D-cysteine in the presence of Pseudomonas aeruginosa [J]. Bioelectrochemistry, 2022, 143: 107953
doi: 10.1016/j.bioelechem.2021.107953
[25] Lekbach Y, Xu D K, El Abed S, et al. Mitigation of microbiologically influenced corrosion of 304L stainless steel in the presence of Pseudomonas aeruginosa by Cistus ladanifer leaves extract [J]. Int. Biodeterior. Biodegrad., 2018, 133: 159
doi: 10.1016/j.ibiod.2018.07.003
[26] Lekbach Y, Li Z, Xu D K, et al. Salvia officinalis extract mitigates the microbiologically influenced corrosion of 304L stainless steel by Pseudomonas aeruginosa biofilm [J]. Bioelectrochemistry, 2019, 128: 193
doi: S1567-5394(19)30005-2 pmid: 31004913
[27] Yu M, Zhang H J, Tian Y, et al. Role of marine Bacillus subtilis and Pseudomonas aeruginosa in cavitation erosion behaviour of 316L stainless steel [J]. Wear, 2023, 514-515: 204593
doi: 10.1016/j.wear.2022.204593
[28] Jia R, Yang D Q, Xu D K, et al. Electron transfer mediators accelerated the microbiologically influence corrosion against carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm [J]. Bioelectrochemistry, 2017, 118: 38
doi: S1567-5394(17)30169-X pmid: 28715664
[29] Jia R, Yang D Q, Xu J, et al. Microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm under organic carbon starvation [J]. Corros. Sci., 2017, 127: 1
doi: 10.1016/j.corsci.2017.08.007
[30] Dou W W, Pu Y N, Gu T Y, et al. Biocorrosion of copper by nitrate reducing Pseudomonas aeruginosa with varied headspace volume [J]. Int. Biodeterior. Biodegrad., 2022, 171: 105405
doi: 10.1016/j.ibiod.2022.105405
[31] Pu Y N, Dou W W, Gu T Y, et al. Microbiologically influenced corrosion of Cu by nitrate reducing marine bacterium Pseudomonas aeruginosa [J]. J. Mater. Sci. Technol., 2020, 47: 10
doi: 10.1016/j.jmst.2020.02.008
[32] Ramírez C G, Monsalve A, Montero C, et al. Microbiologically influenced corrosion of Al-Cu-Li alloy by Pseudomonas aeruginosa [J]. J. Mater. Res. Technol., 2025, 36: 5286
doi: 10.1016/j.jmrt.2025.04.188
[33] Cabrera-Correa L, González-Rovira L, de Dios López-Castro J, et al. Pitting and intergranular corrosion of Scalmalloy® aluminium alloy additively manufactured by Selective Laser Melting (SLM) [J]. Corros. Sci., 2022, 201: 110273
doi: 10.1016/j.corsci.2022.110273
[34] Zhang H, Gu D D, Dai D H, et al. Influence of scanning strategy and parameter on microstructural feature, residual stress and performance of Sc and Zr modified Al-Mg alloy produced by selective laser melting [J]. Mater. Sci. Eng., 2020, 788A: 139593
[35] Liang Y X, Li G A, Liu L, et al. Corrosion behavior of Al-6.8Zn-2.2Mg-Sc-Zr alloy with high resistance to intergranular corrosion [J]. J. Mater. Res. Technol., 2023, 24: 7552
doi: 10.1016/j.jmrt.2023.05.017
[36] Fu Q, Xu J, Wei B X, et al. Biologically competitive effect of Desulfovibrio desulfurican and Pseudomonas stutzeri on corrosion of X80 pipeline steel in the Shenyang soil solution [J]. Bioelectrochemistry, 2022, 145: 108051
doi: 10.1016/j.bioelechem.2022.108051
[37] Fu Q, Song G L, Yao X R. Biofouling and corrosion of magnesium alloys WE43 and AM60 by Chlorella vulgaris in artificial seawater [J]. Corros. Sci., 2025, 250: 112884
doi: 10.1016/j.corsci.2025.112884
[38] Hollmann B, Perkins M, Chauhan V M, et al. Fluorescent nanosensors reveal dynamic pH gradients during biofilm formation [J]. npj Biofilms Microbiomes, 2021, 7: 50
doi: 10.1038/s41522-021-00221-8
[39] Kolics A, Besing A S, Baradlai P, et al. Effect of pH on thickness and ion content of the oxide film on aluminum in NaCl media [J]. J. Electrochem. Soc., 2001, 148: B251
doi: 10.1149/1.1376118
[40] Gu T Y. Theoretical modeling of the possibility of acid producing bacteria causing fast pitting biocorrosion [J]. J. Microb. Biochem. Technol., 2014, 6: 068
[1] LAN Botao, WU Bin, MING Hongliang, WANG Jianqiu, HAN En-Hou. Research Progress of Stress Corrosion Crack Behavior of Selected Laser Melted Austenitic Stainless Steel in High Temperature Pressurized Water[J]. 中国腐蚀与防护学报, 2026, 46(1): 1-14.
[2] DAI Nianwei, DOU Xinyi, LIU Huajian, LENG Bin. Research Progress on Corrosion of Additively Manufactured Alloys Applied in Nuclear Energy Field[J]. 中国腐蚀与防护学报, 2026, 46(1): 15-24.
[3] ZHOU Li, CAO Xiaodie, LAI Youbin, DING Wangwang, WEI Boxin, WU Jiajun. Research Progress in Influence of Heat Treatment on Corrosion Behavior of Additive Manufactured Parts[J]. 中国腐蚀与防护学报, 2026, 46(1): 37-48.
[4] YI Junda, LENG Ao, GONG Delun, WEI Boxin. Microstructureand Properties of Low Modulus Corrosion-resistant Metastable β-Ti Alloy Prepared by Electron Beam Melting[J]. 中国腐蚀与防护学报, 2026, 46(1): 49-59.
[5] ZHU Dingding, ZHAO Xiya, ZHANG Xiaomei, MEI Ziqi, LU Wenjun, WANG Shuai. Comparative Characterization of Microstructure and High-temperature Oxidation Behavior of Additive Manufacturing and Casting TiAl Alloy[J]. 中国腐蚀与防护学报, 2026, 46(1): 71-80.
[6] LI Kexuan, WANG Yipeng, LIAO Bokai. Comparative Study on Passive Behavior of Wire Arc Additive Manufactured, Selective Laser Melted, and Conventional TC4 Ti-alloys[J]. 中国腐蚀与防护学报, 2026, 46(1): 186-192.
[7] CHEN Simin, LIAN Longjiang, HUANG Yansong, ZENG Lanxiang, LEI Bing, MENG Guozhe. Galvanic Corrosion Behavior and Reaction Mechanism of Cu-Al Couple in Ethylene Glycol-Water Coolent[J]. 中国腐蚀与防护学报, 2026, 46(1): 299-307.
[8] LI Weihua, LI Zhong, ZHANG Danni, XU Dake. Microbial-induced Mineralization for Inhibiting Metal Corrosion: Mechanism, Design Strategies and Prospects[J]. 中国腐蚀与防护学报, 2025, 45(6): 1459-1473.
[9] WANG De, ZHANG Fan, WANG Xingqi, ZHANG Hexin, ZHAO Chengzhi, YANG Yange. Long-term Corrosion Resistance of Carbon Steel and Al-alloy with Single Component Fluorocarbon Modified Epoxy Coating[J]. 中国腐蚀与防护学报, 2025, 45(6): 1549-1562.
[10] LI Zanlong, YAN Qing, MAN Cheng. Effect of Pressure Load and Friction Frequency on Wear Corrosion Behavior of 7075 Al-alloy[J]. 中国腐蚀与防护学报, 2025, 45(6): 1669-1678.
[11] RUAN Zhibang, WEI Shixuan, WANG Shupeng, LV Zhengping, LI Gesheng, LI Yizhou. Inhibition Effect of Imidazoline Phosphate on Galvanic Corrosion of 7075 Al-alloy in Neutral NaCl Solution[J]. 中国腐蚀与防护学报, 2025, 45(6): 1734-1740.
[12] XIA Da-Hai, PAN Chengcheng, GUO Yujie, HU Wenbin, TRIBOLLET Bernard. Electrochemical Impedance Spectroscopy Analysis on Interface State and Corrosion Mechanism of 7050 Al-alloy Subjected to Cavitation Erosion in NaCl Solution[J]. 中国腐蚀与防护学报, 2025, 45(5): 1196-1204.
[13] HE Wuhao, LIU Yang, YANG Siyi, ZHANG Shaodong, WU Wei, ZHANG Junxi. Effect of Sensitization Treatment on Electrochemical Behavior and Intergranular Corrosion of Conventional and Additively Manufactured 316L Stainless Steels[J]. 中国腐蚀与防护学报, 2025, 45(5): 1331-1340.
[14] LEI Tao, CHEN Shaogao, LIU Xiuli, FAN Jinlong, ZHENG Xingwen. Corrosion Behavior of Laser Additive Manufacturing AlSi10Mg Al-alloy in Ethylene Glycol Coolant and Detection of Coolant Degradation[J]. 中国腐蚀与防护学报, 2025, 45(4): 1014-1024.
[15] DING Zhichao, ZHANG Shuguo, XIAO Xiaochun, WANG Di, LI Wenjie, JIANG Lihong. Intergranular Corrosion Behavior of Friction Stir Welded Joints of Semi-solid 7075 Al-alloy[J]. 中国腐蚀与防护学报, 2025, 45(4): 1089-1097.
No Suggested Reading articles found!