|
|
|
| Influence of Pseudomonas Aeruginosa on Corrosion Behavior of Additively Manufactured Al-Mg-Sc-Zr Alloy in Marine Environment |
ZHANG Junnan1, PENG Can2( ), FU Qi1( ), ZHANG Liang2, SONG Guangling1( ) |
1.Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China 2.Institute of Intelligent Manufacturing Technology, Shenzhen Polytechnic University, Shenzhen 518055, China |
|
Cite this article:
ZHANG Junnan, PENG Can, FU Qi, ZHANG Liang, SONG Guangling. Influence of Pseudomonas Aeruginosa on Corrosion Behavior of Additively Manufactured Al-Mg-Sc-Zr Alloy in Marine Environment. Journal of Chinese Society for Corrosion and protection, 2026, 46(1): 60-70.
|
|
|
Abstract A bulk Al-Mg-Sc-Zr alloy was fabricated by using selective laser melting (SLM) technique. Then its corrosion behavior of the alloy was investigated by immersion in Pseudomonas aeruginosa (P. aeruginosa) inoculated artificial seawater for 14 d, meanwhile the distribution of P. aeruginosa on the alloy surface was observed via fluorescence microscopy, and the trend in cell population changes was statistically analyzed. The corrosion behavior and mechanism of the alloy in both sterile and inoculated environments were investigated through electrochemical tests, scanning electron microscopy (SEM), white light interferometry, and X-ray photoelectron spectroscopy (XPS). The results demonstrated that the Al-Mg-Sc-Zr alloy exhibited excellent corrosion resistance in the sterile group, with virtually no observable pitting on the surface. In contrast, in the inoculated group, P. aeruginosa could adhere to the alloy surface and induced severe localized corrosion. P. aeruginosa could extract electrons from Al and Mg elements to sustain its metabolic activities, while oxygen concentration cells were formed inside the heterogeneous biofilm, significantly exacerbating the development of localized corrosion and reducing the corrosion stability of the alloy.
|
|
Received: 17 June 2025
32134.14.1005.4537.2025.189
|
|
|
| Fund: National Natural Science Foundation of China(52250710159);China Postdoctoral Science Foundation(2024M751292) |
| [1] |
Song X W, Bai M M, Chen N N, et al. Effect of Aspergillus aculeatus on corrosion behavior of 5A02 Al-alloy in coastal atmospheric environment of Hainan Island [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 631
|
|
宋晓稳, 白苗苗, 陈娜娜 等. 海南滨海大气环境中棘孢曲霉对铝合金腐蚀行为影响 [J]. 中国腐蚀与防护学报, 2025, 45: 631
doi: 10.11902/1005.4537.2024.191
|
| [2] |
Xia D H, Ji Y Y, Mao Y C, et al. Localized corrosion mechanism of 2024 aluminum alloy in a simulated dynamic seawater/air interface [J]. Acta Metall. Sin., 2023, 59: 297
doi: 10.11900/0412.1961.2022.00196
|
|
夏大海, 计元元, 毛英畅 等. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制 [J]. 金属学报, 2023, 59: 297
doi: 10.11900/0412.1961.2022.00196
|
| [3] |
Duan T G, Li Z, Peng W S, et al. Corrosion characteristics of 5A06 Al-alloy exposed in natural deep-sea environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 352
|
|
段体岗, 李 祯, 彭文山 等. 深海环境5A06铝合金腐蚀行为与表面特性 [J]. 中国腐蚀与防护学报, 2023, 43: 352
doi: 10.11902/1005.4537.2022.102
|
| [4] |
Deng C M, Liu Z, Xia D H, et al. Localized corrosion mechanism of 5083-H111 Al alloy in simulated dynamic seawater zone [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 683
|
|
邓成满, 刘 喆, 夏大海 等. 5083-H111铝合金在模拟动态海水环境中的局部腐蚀机制 [J]. 中国腐蚀与防护学报, 2023, 43: 683
doi: 10.11902/1005.4537.2023.140
|
| [5] |
Luo B H, Bai Z H. Development of high-performance aluminum alloys [J]. Ordn. Mater. Sci. Eng., 2002, 25: 59
|
|
罗兵辉, 柏振海. 高性能铝合金研究进展 [J]. 兵器材料科学与工程, 2002, 25: 59
|
| [6] |
Zhang X M, Deng Y L, Zhang Y. Development of high strength aluminum alloys and processing techniques for the materials [J]. Acta Metall. Sin., 2015, 51: 257
doi: 10.11900/0412.1961.2014.00406
|
|
张新明, 邓运来, 张 勇. 高强铝合金的发展及其材料的制备加工技术 [J]. 金属学报, 2015, 51: 257
doi: 10.11900/0412.1961.2014.00406
|
| [7] |
Zhang X M, Liu S D. Aerocraft aluminum alloys and their materials processing [J]. Mater. China, 2013, 32: 39
|
|
张新明, 刘胜胆. 航空铝合金及其材料加工 [J]. 中国材料进展, 2013, 32: 39
|
| [8] |
Dursun T, Soutis C. Recent developments in advanced aircraft aluminium alloys [J]. Mater. Des., 2014, 56: 862
doi: 10.1016/j.matdes.2013.12.002
|
| [9] |
Lin X, Huang W D. Laser additive manufacturing of high-performance metal components [J]. Sci. China Inf. Sci., 2015, 45: 1111
|
|
林 鑫, 黄卫东. 高性能金属构件的激光增材制造 [J]. 中国科学: 信息科学, 2015, 45: 1111
|
| [10] |
Wang H M. Materials' fundamental issues of laser additive manufacturing for high-performance large metallic components [J]. Acta Aeronaut. Astronaut. Sin., 2014, 35: 2690
|
|
王华明. 高性能大型金属构件激光增材制造: 若干材料基础问题 [J]. 航空学报, 2014, 35: 2690
doi: 10.7527/S1000-6893.2014.0174
|
| [11] |
Gu D D, Meiners W, Wissenbach K, et al. Laser additive manufacturing of metallic components: Materials, processes and mechanisms [J]. Int. Mater. Rev., 2012, 57: 133
doi: 10.1179/1743280411Y.0000000014
|
| [12] |
Herzog D, Seyda V, Wycisk E, et al. Additive manufacturing of metals [J]. Acta Mater., 2016, 117: 371
doi: 10.1016/j.actamat.2016.07.019
|
| [13] |
Yan H, Wang S X, Li X F, et al. Study on the friction and wear properties of selective laser melted Al-Cu-Mg alloy [J]. Powder Metall. Ind., 2023, 33(1): 17
|
|
闫 浩, 王世鑫, 李晓峰 等. SLM成形Al-Cu-Mg合金的摩擦磨损性能 [J]. 粉末冶金工业, 2023, 33(1): 17
|
| [14] |
Li R D, Wang M B, Yuan T C, et al. Selective laser melting of a novel Sc and Zr modified Al-6.2 Mg alloy: Processing, microstructure, and properties [J]. Powder Technol., 2017, 319: 117
doi: 10.1016/j.powtec.2017.06.050
|
| [15] |
Spierings A B, Dawson K, Kern K, et al. SLM-processed Sc- and Zr-modified Al-Mg alloy: Mechanical properties and microstructural effects of heat treatment [J]. Mater. Sci. Eng., 2017, 701A: 264
|
| [16] |
Yang K V, Shi Y J, Palm F, et al. Columnar to equiaxed transition in Al-Mg(-Sc)-Zr alloys produced by selective laser melting [J]. Scr. Mater., 2018, 145: 113
doi: 10.1016/j.scriptamat.2017.10.021
|
| [17] |
Wang M B, Li R D, Yuan T C, et al. Microstructures and mechanical property of AlMgScZrMn-a comparison between selective laser melting, spark plasma sintering and cast [J]. Mater. Sci. Eng., 2019, 756A: 354
|
| [18] |
Qi P, Zeng Y, Zhang D, et al. The biofilm-metal interface: A hotspot for microbiologically influenced corrosion [J]. Cell Rep. Phys. Sci., 2025, 6: 102500
|
| [19] |
Arroussi M, Jia Q, Bai C G, et al. Inhibition effect on microbiologically influenced corrosion of Ti-6Al-4V-5Cu alloy against marine bacterium Pseudomonas aeruginosa [J]. J. Mater. Sci. Technol., 2022, 109: 282
doi: 10.1016/j.jmst.2021.08.084
|
| [20] |
Xu D K, Xia J, Zhou E Z, et al. Accelerated corrosion of 2205 duplex stainless steel caused by marine aerobic Pseudomonas aeruginosa biofilm [J]. Bioelectrochemistry, 2017, 113: 1
doi: 10.1016/j.bioelechem.2016.08.001
|
| [21] |
Xu D K, Zhou E Z, Zhao Y, et al. Enhanced resistance of 2205 Cu-bearing duplex stainless steel towards microbiologically influenced corrosion by marine aerobic Pseudomonas aeruginosa biofilms [J]. J. Mater. Sci. Technol., 2018, 34: 1325
doi: 10.1016/j.jmst.2017.11.025
|
| [22] |
Zhu L Y, Wu J J, Zhang D, et al. Influence of the α fraction on 2205 duplex stainless steel corrosion affected by Pseudomonas aeruginosa [J]. Corros. Sci., 2021, 193: 109877
doi: 10.1016/j.corsci.2021.109877
|
| [23] |
Huang L Y, Chang W W, Zhang D W, et al. Acceleration of corrosion of 304 stainless steel by outward extracellular electron transfer of Pseudomonas aeruginosa biofilm [J]. Corros. Sci., 2022, 199: 110159
doi: 10.1016/j.corsci.2022.110159
|
| [24] |
Qian H C, Chang W W, Liu W L, et al. Investigation of microbiologically influenced corrosion inhibition of 304 stainless steel by D-cysteine in the presence of Pseudomonas aeruginosa [J]. Bioelectrochemistry, 2022, 143: 107953
doi: 10.1016/j.bioelechem.2021.107953
|
| [25] |
Lekbach Y, Xu D K, El Abed S, et al. Mitigation of microbiologically influenced corrosion of 304L stainless steel in the presence of Pseudomonas aeruginosa by Cistus ladanifer leaves extract [J]. Int. Biodeterior. Biodegrad., 2018, 133: 159
doi: 10.1016/j.ibiod.2018.07.003
|
| [26] |
Lekbach Y, Li Z, Xu D K, et al. Salvia officinalis extract mitigates the microbiologically influenced corrosion of 304L stainless steel by Pseudomonas aeruginosa biofilm [J]. Bioelectrochemistry, 2019, 128: 193
doi: S1567-5394(19)30005-2
pmid: 31004913
|
| [27] |
Yu M, Zhang H J, Tian Y, et al. Role of marine Bacillus subtilis and Pseudomonas aeruginosa in cavitation erosion behaviour of 316L stainless steel [J]. Wear, 2023, 514-515: 204593
doi: 10.1016/j.wear.2022.204593
|
| [28] |
Jia R, Yang D Q, Xu D K, et al. Electron transfer mediators accelerated the microbiologically influence corrosion against carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm [J]. Bioelectrochemistry, 2017, 118: 38
doi: S1567-5394(17)30169-X
pmid: 28715664
|
| [29] |
Jia R, Yang D Q, Xu J, et al. Microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm under organic carbon starvation [J]. Corros. Sci., 2017, 127: 1
doi: 10.1016/j.corsci.2017.08.007
|
| [30] |
Dou W W, Pu Y N, Gu T Y, et al. Biocorrosion of copper by nitrate reducing Pseudomonas aeruginosa with varied headspace volume [J]. Int. Biodeterior. Biodegrad., 2022, 171: 105405
doi: 10.1016/j.ibiod.2022.105405
|
| [31] |
Pu Y N, Dou W W, Gu T Y, et al. Microbiologically influenced corrosion of Cu by nitrate reducing marine bacterium Pseudomonas aeruginosa [J]. J. Mater. Sci. Technol., 2020, 47: 10
doi: 10.1016/j.jmst.2020.02.008
|
| [32] |
Ramírez C G, Monsalve A, Montero C, et al. Microbiologically influenced corrosion of Al-Cu-Li alloy by Pseudomonas aeruginosa [J]. J. Mater. Res. Technol., 2025, 36: 5286
doi: 10.1016/j.jmrt.2025.04.188
|
| [33] |
Cabrera-Correa L, González-Rovira L, de Dios López-Castro J, et al. Pitting and intergranular corrosion of Scalmalloy® aluminium alloy additively manufactured by Selective Laser Melting (SLM) [J]. Corros. Sci., 2022, 201: 110273
doi: 10.1016/j.corsci.2022.110273
|
| [34] |
Zhang H, Gu D D, Dai D H, et al. Influence of scanning strategy and parameter on microstructural feature, residual stress and performance of Sc and Zr modified Al-Mg alloy produced by selective laser melting [J]. Mater. Sci. Eng., 2020, 788A: 139593
|
| [35] |
Liang Y X, Li G A, Liu L, et al. Corrosion behavior of Al-6.8Zn-2.2Mg-Sc-Zr alloy with high resistance to intergranular corrosion [J]. J. Mater. Res. Technol., 2023, 24: 7552
doi: 10.1016/j.jmrt.2023.05.017
|
| [36] |
Fu Q, Xu J, Wei B X, et al. Biologically competitive effect of Desulfovibrio desulfurican and Pseudomonas stutzeri on corrosion of X80 pipeline steel in the Shenyang soil solution [J]. Bioelectrochemistry, 2022, 145: 108051
doi: 10.1016/j.bioelechem.2022.108051
|
| [37] |
Fu Q, Song G L, Yao X R. Biofouling and corrosion of magnesium alloys WE43 and AM60 by Chlorella vulgaris in artificial seawater [J]. Corros. Sci., 2025, 250: 112884
doi: 10.1016/j.corsci.2025.112884
|
| [38] |
Hollmann B, Perkins M, Chauhan V M, et al. Fluorescent nanosensors reveal dynamic pH gradients during biofilm formation [J]. npj Biofilms Microbiomes, 2021, 7: 50
doi: 10.1038/s41522-021-00221-8
|
| [39] |
Kolics A, Besing A S, Baradlai P, et al. Effect of pH on thickness and ion content of the oxide film on aluminum in NaCl media [J]. J. Electrochem. Soc., 2001, 148: B251
doi: 10.1149/1.1376118
|
| [40] |
Gu T Y. Theoretical modeling of the possibility of acid producing bacteria causing fast pitting biocorrosion [J]. J. Microb. Biochem. Technol., 2014, 6: 068
|
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|