|
|
|
| High-temperature Oxidation Behavior of Liquid-phase Fluorination Treated Ti45Al8.5Nb Alloy |
ZHUANG Zhaotao, YAN Haojie, XIE Bing, GUI Ye, SUN Qingqing, WU Liankui( ), CAO Fahe |
| School of Materials, Sun Yat-sen University, Shenzhen 518107, China |
|
Cite this article:
ZHUANG Zhaotao, YAN Haojie, XIE Bing, GUI Ye, SUN Qingqing, WU Liankui, CAO Fahe. High-temperature Oxidation Behavior of Liquid-phase Fluorination Treated Ti45Al8.5Nb Alloy. Journal of Chinese Society for Corrosion and protection, 2025, 45(6): 1517-1527.
|
|
|
Abstract As an emerging lightweight, high-temperature structural material, TiAl alloy holds broad application prospects in the aerospace field. However, its insufficient oxidation resistance limits its further application. In this study, a novel solvothermal liquid-phase fluorination treatment technique was applied to introduce a fluorinated layer on the surface of Ti45Al8.5Nb alloy, in order to promote the in-situ growth of a dense Al2O3 oxide layer on the alloy surface, thereby enhancing its high-temperature oxidation resistance. The oxidation behavior, as well as the composition and structure of the oxide layer, of the Ti45Al8.5Nb alloy after liquid-phase fluorination treatment were investigated in air at 900 oC. The results indicated that the liquid-phase fluorination treatment can significantly reduce the oxidation rate of the Ti45Al8.5Nb alloy. After oxidation at 900 oC for 100 h, the weight gain of the fluorinated alloy decreased from 1.12 mg·cm-2 (for untreated ones) to 0.45 mg·cm-2. The treatment facilitated the formation of a continuous and protective dense scale Al2O3 on the alloy surface, effectively suppressing the inward diffusion of oxygen and thereby significantly enhancing the alloy's high-temperature oxidation resistance.
|
|
Received: 04 February 2025
32134.14.1005.4537.2025.040
|
|
|
| Fund: National Natural Science Foundation of China(52271084);Natural Science Foundation of Guangdong Province(2021B1515020056);Songshan Lake Materials Laboratory Development Project(2022SLABFK06) |
Corresponding Authors:
WU Liankui, E-mail: wulk5@mail.sysu.edu.cn
|
| [1] |
Wang Y P, Li S Y, Ma T F, et al. Improving high temperature oxidation resistance of TiAl alloy via hierarchical Ti5Si3-Ti2AlC precipitation strategy [J]. Corros. Sci., 2024, 228: 111834
|
| [2] |
Gong Z Q, Zhang H X, Sun W, et al. Research progress of TiAl-based alloys [J]. J. Mater. Sci. Eng., 2023, 41: 315
|
|
(宫子琪, 张慧星, 孙 伟 等. TiAl基合金研究现状及进展 [J]. 材料科学与工程学报, 2023, 41: 315)
|
| [3] |
Yan H J, Meng X Z, Zhuang Z T, et al. Effect of Ni in SiO2 coating on the oxidation resistance of TiAl alloy at 900 oC [J]. Appl. Surf. Sci., 2023, 638: 158054
|
| [4] |
Yan H J, Yin R Z, Wang W J, et al. Cyclic oxidation behavior of TiAl alloy with electrodeposited SiO2 coating [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 81
|
|
(严豪杰, 殷若展, 汪文君 等. TiAl合金表面电沉积SiO2涂层抗循环氧化性能研究 [J]. 中国腐蚀与防护学报, 2025, 45: 81)
|
| [5] |
Liu X L, Sun H L, Jiang X S, et al. Isothermal oxidation behaviour of TiAl alloys prepared by spark plasma sintering with the addition of Gd under water vapour at 900 oC [J]. Intermetallics, 2023, 153: 107796
|
| [6] |
Huang F, Liang S C, Hu S X, et al. Status and progress in strengthening and toughening of TiAl alloy [J]. Spec. Cast. Nonferrous Alloy., 2023, 43: 1441
|
|
(黄 锋, 梁思诚, 胡尚兴 等. TiAl合金强韧化研究现状与进展 [J]. 特种铸造及有色合金, 2023, 43: 1441)
|
| [7] |
Li Y Q, Kou H C, Wang Y R, et al. Origin of surface oxidation induced the nucleation and propagation of microcracks in TNM alloy [J]. J. Mater. Sci. Technol., 2024, 202: 16
|
| [8] |
Sun C H, Li H R, Li L Y, et al. Enhanced corrosion resistance of Ti-Al-Mo alloy through solid state transformation driven by rapid solidification [J]. Corros. Commun., 2024, 16: 35
|
| [9] |
Liang H, Ding H S, Xu X S, et al. Effect of variation in Zr content on microstructure and high-temperature tensile properties of a γ-TiAl alloy [J]. Mater. Sci. Eng., 2024, 893A: 146085
|
| [10] |
Gao Z T, Hu R, Zou H, et al. Insight into the Ta alloying effects on the oxidation behavior and mechanism of cast TiAl alloy [J]. Mater. Design, 2024, 241: 112941
|
| [11] |
Sun T L, Guo Z C, Cao J, et al. Isothermal oxidation behavior of high-Nb-containing TiAl alloys doped with W, B, Y, and C/Si [J]. Corros. Sci., 2023, 213: 110980
|
| [12] |
Bik M, Galetz M, Mengis L, et al. Oxidation behaviour of uncoated and PDC-SiAlOC glass-coated TiAl at 750 oC in dry and humid air [J]. Appl. Surf. Sci., 2023, 632: 157601
|
| [13] |
Li Y Y, Yan H J, Yin R Z, et al. The oxidation resistance of Ni nanoparticle incorporated SiOC coating for TiAl alloy [J]. Appl. Surf. Sci., 2025, 679: 161148
|
| [14] |
Li Y, Ma K, Xu J J, et al. Microstructure evolution and cyclic oxidation performance of Cr2AlC as active diffusion barrier for NiCrAlY coating on TiAl alloy [J]. Corros. Sci., 2024, 226: 111696
|
| [15] |
Yang L L, Gao F Y, Zhou Z H, et al. Oxidation behavior of the AlN coatings on the TiAl alloy at 900 oC [J]. Corros. Sci., 2023, 211: 110891
|
| [16] |
Yan H J, Meng X Z, Zhang Q H, et al. High temperature oxidation performance of the electrodeposited SiO2 coating incorporated with Ni nanoparticle [J]. Corros. Sci., 2022, 205: 110455
|
| [17] |
Xu C, Zhu M H, Guan H H, et al. Improvement of steam oxidation resistance of the γ-TiAl alloy with microarc oxidation coatings at 900-1200 oC [J]. Corros. Sci., 2022, 209: 110711
|
| [18] |
Wu L L, Yin R Z, Chen Z X, et al. Preparation and high temperature oxidation resistance of Zr-SiO2 composite coating on Ti45Al8.5Nb alloy [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1423
|
|
(吴亮亮, 殷若展, 陈朝旭 等. Ti45Al8.5Nb合金表面Zr-SiO2复合涂层的制备及其抗高温氧化性能研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1423)
|
| [19] |
Peng X M, Xia C Q, Wang Z H, et al. Development of high temperature oxidation and protection of TiAl-based alloy [J]. Chin. J. Nonferr. Metal., 2010, 20: 1116
|
|
(彭小敏, 夏长清, 王志辉 等. TiAl基合金高温氧化及防护的研究进展 [J]. 中国有色金属学报, 2010, 20: 1116)
|
| [20] |
Tang G Z, Sun K W, Ma X X, et al. Effects of NH4F solution dipping treatment on high temperature oxidation behaviors of γ-TiAl alloy [J]. Chin. J. Nonferr. Metal., 2011, 21: 1535
|
|
(唐光泽, 孙科文, 马欣新 等. NH4F溶液化学处理对γ-TiAl抗高温氧化性能的影响 [J]. 中国有色金属学报, 2011, 21: 1535)
|
| [21] |
Wu L K, Bao Y T, Jiang M Y, et al. Insights into the surface pretreatment on the oxidation behavior of anodized TiAl alloy [J]. Corros. Sci., 2022, 207: 110571
|
| [22] |
Mu Y X, Sun D B, Wang Y S, et al. Isothermal oxidation and interfacial structure of Ti-45Al-8.5Nb alloy soaked by the NaF solution [J]. Mater. Lett., 2022, 318: 132146
|
| [23] |
Guo Y C, Liang Y F, Lin J P. In situ synthesis of nano/micron Ti2AlC reinforced high-Nb TiAl composites: Microstructure and mechanical properties [J]. Intermetallics, 2023, 159: 107937
|
| [24] |
Schütze M, Hald M. Improvement of the oxidation resistance of TiAl alloys by using the chlorine effect [J]. Mater. Sci. Eng., 1997, 239-240A: 847
|
| [25] |
Kumagai M, Shibue K, Kim M. Influence of minor elements on oxidation behavior of TiAl intermetallic compound. TiAl kinzoku kan kagobutsu no sanka tokusei ni oyobosu biryo genso no eikyo [J]. J. Japan Inst. Met., 1993, 57: 721
|
| [26] |
Kumagai M, Shibue K, Kim M S, et al. Influence of chlorine on the oxidation behavior of TiAl Mn intermetallic compound [J]. Intermetallics, 1996, 4: 557
|
| [27] |
Donchev A, Zschau H E, Schütze M. The halogen effect for improving the oxidation resistance of TiAl-alloys [J]. Mater. High Temp., 2005, 22: 309
|
| [28] |
Schumacher G, Dettenwanger F, Schütze M, et al. Microalloying effects in the oxidation of TiAl materials [J]. Intermetallics, 1999, 7: 1113
|
| [29] |
Yankov R A, Kolitsch A, von Borany J, et al. Microstructural studies of fluorine-implanted titanium aluminides for enhanced environmental durability [J]. Adv. Eng. Mater., 2014, 16: 52
|
| [30] |
Zhu Y C, Li X Y, Fujita K, et al. The improvement of the oxidation resistance of TiAl alloys by fluorine plasma-based ion implantation [J]. Surf. Coat. Technol., 2002, 158-159: 503
|
| [31] |
Zschau H E, Gauthier V, Schumacher G, et al. Investigation of the fluorine microalloying effect in the oxidation of TiAl at 900 oC in air [J]. Oxid. Met., 2003, 59: 183
|
| [32] |
Friedle S, Laska N, Braun R, et al. Oxidation behaviour of a fluorinated beta-stabilized γ-TiAl alloy with thermal barrier coatings in H2O-and SO2-containing atmospheres [J]. Corros. Sci., 2015, 92: 280
|
| [33] |
Donchev A, Galetz M, Schütze M, et al. Combination of Al‐enrichment and fluorination to enhance the environmental stability of Ti‐alloys at elevated temperatures [A]. VenkateshV, PilchakA L, AllisonJ E, et al. Proceedings of the 13th World Conference on Titanium [M]. Hoboken: Wiley, 2016
|
| [34] |
Yan H J, Xia J J, Wu L K, et al. Hot corrosion behavior of Ti45-Al8.5Nb alloy: Effect of anodization and pre-oxidation [J]. Acta Metall. Sin. (Engl. Lett.), 2022, 35: 1531
|
| [35] |
Li Z X, Liu Y H, Liu H J, et al. Effect of magnetron sputtered Al coating and anodization on the hot corrosion performance of Ti48Al2Nb2Cr alloy [J]. Mater. Today Commun., 2023, 36: 106524
|
| [36] |
Yang H T, Xu S H, Lan J J, et al. Effect of Rhenium addition on the high-temperature oxidation resistance of anodized γ-TiAl alloy [J]. J. Alloy. Compd., 2025, 1010: 178087
|
| [37] |
Bao Y T, Wang Y N, Zheng L, et al. Effect of the anodization on high tempreture oxidation behavior and mechanical properties of TiAl alloy [J]. J. Aeronaut. Mater., 2021, 41(2): 72
|
|
(包雅婷, 王亚楠, 郑 磊 等. 阳极氧化对TiAl合金高温氧化行为和力学性能的影响 [J]. 航空材料学报, 2021, 41(2): 72)
|
| [38] |
Wu L K, Xia J J, Jiang M Y, et al. Oxidation behavior of Ti45Al8.5-Nb alloy anodized in NH4F containing solution [J]. Corros. Sci., 2020, 166: 108447
|
| [39] |
Yan W, Wang J, Hu Q, et al. Approaching the theoretical capacity of TiO2 anode in a photo-rechargeable lithium-ion battery [J]. Nano Res., 2024, 17: 2655
|
| [40] |
Koudahi M F, Tovar A C P, Béguin F, et al. Charge storage and operando electrochemical dilatometry of MXene electrodes in ionic liquids [J]. Energy Storage Mater., 2024, 72: 103771
|
| [41] |
Lin X T, Wang Z K, Jiang X X, et al. Effect of Al2O3/SiO2 mass ratio on the structure and properties of medical neutral boroaluminosilicate glass based on XPS and infrared analysis [J]. Ceram. Int., 2023, 49: 38499
|
| [42] |
Gao K, Xing C F, Xu D C, et al. Aluminum halide‐based electron‐selective passivating contacts for crystalline silicon solar cells [J]. Small, 2024, 20: 2310352
|
| [43] |
Guo L, Yao X J, Wang Z C, et al. Hierarchically periodic macroporous niobium oxide architecture for enhanced hydrogen evolution [J]. Small, 2024, 20: 2310753
|
| [44] |
Zschau H E, Schütze M, Baumann H, et al. The quantitative role of surface doped fluorine for the improvement of oxidation resistance of TiAl in air [J]. Mater. Sci. Forum., 461-464: 505
|
| [45] |
Zeller A, Dettenwanger F, Schütze M. Influence of water vapour on the oxidation behaviour of titanium aluminides [J]. Intermetallics, 2002, 10: 59
|
| [46] |
Becker S, Rahmel A, Schorr M, et al. Mechanism of isothermal oxidation of the intel-metallic TiAl and of TiAl alloys [J]. Oxid. Met., 1992, 38: 425
|
| [47] |
Dettenwanger F, Schumann E, Ruhle M, et al. Microstructural study of oxidized γ-TiAl [J]. Oxid. Met., 1998, 50: 269
|
| [48] |
Lang C, Schütze M. The initial stages in the oxidation of TiAl [J]. Mater. Corros., 1997, 48: 13
|
| [49] |
Lin J P, Zhao L L, Li G Y, et al. Effect of Nb on oxidation behavior of high Nb containing TiAl alloys [J]. Intermetallics, 2011, 19: 131
|
| [50] |
Friedle S, Pflumm R, Seyeux A, et al. ToF-SIMS study on the initial stages of the halogen effect in the oxidation of TiAl alloys [J]. Oxid. Met., 2018, 89: 123
|
| [51] |
Schütze M, Schumacher G, Dettenwanger F, et al. The halogen effect in the oxidation of intermetallic titanium aluminides [J]. Corros. Sci., 2002, 44: 303
|
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|