Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (1): 173-181    DOI: 10.11902/1005.4537.2024.268
Current Issue | Archive | Adv Search |
First Principles Study on Effect of Al-O Element Aggregation on Oxidation of a Ni-based Single Crystal Superalloy
PEI Haiqing1, XIAO Jingbo2, LI Wei2(), YU Haoyu1, WEN Zhixun1, YUE Zhufeng1
1 State Key Laboratory of Clean and Efficient Turbomachinery Power Equipment, School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi'an 710129, China
2 School of Energy and Power Engineering, Changsha University of Science & Technology, Changsha 410114, China
Cite this article: 

PEI Haiqing, XIAO Jingbo, LI Wei, YU Haoyu, WEN Zhixun, YUE Zhufeng. First Principles Study on Effect of Al-O Element Aggregation on Oxidation of a Ni-based Single Crystal Superalloy. Journal of Chinese Society for Corrosion and protection, 2025, 45(1): 173-181.

Download:  HTML  PDF(11043KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Ni-based single crystal superalloys have been widely used as materials for aircraft engine turbine blades due to their excellent high-temperature mechanical properties. The harsh service environment can lead to severe oxidation of the superalloys for turbine blades. In contrast to the high-temperature mechanical properties, further research is needed on the oxidation behavior of the Ni-based single crystal superalloys. Herein, the evolution mechanism of the oxide scale on Ni-based single crystal superalloy has been studied through first-principles calculations and oxidation experiments. By analyzing the interface adhesion energy and charge distribution, while taking the impact of O and Al atoms on the interface stability into account, it is determined that the Al-O structure has been identified as the most stable NiAl/NiO interface model. The aggregation of O and Al atoms at the interface may weaken the bonding strength of the NiAl/NiO interface, which means that the interface tends to be separated easily. The oxidation behavior of the alloy was examined using XRD, EDS, SEM, etc., in terms of the oxidation kinetics of the alloy, as well as the morphology and phase composition of the oxide scales. Results indicate that NiO forms initially during the alloy oxidation, followed by Al2O3 beneath NiO. As O and Al atoms aggregate at the interface, NiO tends to separate from the alloy surface. By combining first-principles calculations with the oxidation test results, the mechanism of evolution of the oxide scale on the alloy was ultimately elucidated.

Key words:  Ni-based single crystal superalloy      high-temperature oxidation      first principles      oxidation kinetics      microstructural evolution     
Received:  25 August 2024      32134.14.1005.4537.2024.268
ZTFLH:  V252  
Fund: National Natural Science Foundation of China(52105147);National Technology Foundation Project(JSXX2021607A0XX)
Corresponding Authors:  LI Wei, E-mail: lwzzgjajie@126.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.268     OR     https://www.jcscp.org/EN/Y2025/V45/I1/173

Fig.1  Model establishment flowcharts: (a) NiAl cell model, (b) NiO cell model, (c) NiAl-Ni surface model, (d) NiAl-Al surface model, (e) NiO surface model, (f) Ni-Ni interface model, (g) Ni-O interface model, (h) Al-Ni interface model, (i) Al-O interface model
Metala / nm
This studyTest resultCalculation result
NiAl0.2900.286[29]0.290[30]
NiO0.4180.419[31]0.417[31]
Table 1  Lattice constants of NiAl and NiO
ElementCrCoWMoAlTaReNbHfNi
Mass fraction / %4.09.08.02.05.77.02.21.01.0Bal.
Atomic fraction / %5.010.03.01.013.02.00.70.60.4Bal.
Table 2  Chemical composition of the Ni-based single crystal superalloy
Fig.2  Morphology of Ni-based single crystal superalloy
Fig.3  ELF projection drawings of NiAl/NiO system: (a) Ni-Ni, (b) Ni-O, (c) Al-Ni, (d) Al-O
Fig.4  Interface models of NiAl/NiO-1Al (a), NiAl/NiO-2Al (b), NiAl/NiO-1O (c) and NiAl/NiO-2O (d)
Fig.5  ELF projection diagrams of NiAl/NiO (a), NiAl/NiO-1Al (b), NiAl/NiO-2Al (c), NiAl/NiO-1O (d) and NiAl/NiO-2O (e) systems
Fig.6  Oxidation kinetic curves of the alloy at 1000 oC for 200 h (a), and comparisons of the parabolic oxidation constant of the alloy with other different oxide forming alloys in literatures (b)[38]
Fig.7  Macroscopic morphologies of the alloy specimens after oxidation at 1000 oC for 0 h (a), 10 h (b), 20 h (c), 40 h (d), 80 h(e), 120 h (f), 160 h (g) and 200 h (h)
Fig.8  XRD patterns of the alloy specimens oxidized at 1000 oC for different time
Fig.9  SEM surface images of the alloy specimens after oxidation at 1000 oC for 10 h (a), 40 h (b), 80 h (c), 120 h (d), 160 h (e) and 200 h (f)
Fig.10  Cross-sectional morphologies of the alloy specimen oxidized at 1000 oC for 40 h (a, b), and element distributions along the marked line in Fig.10b (c)
Fig.11  Chemical compositions of the marked points 1~5 in Fig.9 (atomic fraction / %)
Fig.12  Mechanism diagrams of the growth of oxide scale on the test alloy at 1000 oC
1 Xia W S, Zhao X B, Yue L, et al. A review of composition evolution in Ni-based single crystal superalloys [J]. J. Mater. Sci. Technol., 2020, 44: 76
doi: 10.1016/j.jmst.2020.01.026
2 Behera A, Sahoo A K, Mahapatra S S. Application of Ni-based superalloy in aero turbine blade: a review [J]. Proc. Inst. Mech. Eng. Part E: J. Process Mech. Eng., 2023: 09544089231219104
3 Li F, Wen Z X, Luo L, et al. Fatigue life estimation of nickel-based single crystal superalloy with different inclined film cooling holes: initial damage quantification and coupling of damage-fracture mechanics models [J]. Int. J. Plast., 2024, 176: 103967
4 Lu P, Jin X C, Li P, et al. Crystal plasticity constitutive model and thermodynamics informed creep-fatigue life prediction model for Ni-based single crystal superalloy [J]. Int. J. Fatigue, 2023, 176: 107829
5 Williams J C, Starke Jr E A. Progress in structural materials for aerospace systems [J]. Acta Mater., 2003, 51: 5775
6 Zhang M, Zhao Y S, Guo Y Y, et al. Effect of overheating events on microstructure and low-cycle fatigue properties of a nickel-based single-crystal superalloy [J]. Metall. Mater. Trans., 2022, 53A: 2214
7 Wen Z X, Li F, Li M. Evaluation method of equivalent initial flaw size and fatigue life prediction of nickel-based single crystal superalloy [J]. Multidiscip. Model. Mater. Struct., 2023, 19: 1311
8 Wang J L, Chen M H, Yang L L, et al. Nanocrystalline coatings on superalloys against high temperature oxidation: a review [J]. Corros. Commun., 2021, 1: 58
9 Yang Y F, Sun W Y, Chen M H, et al. Oxidation behavior of a single crystal Ni-based superalloy N5 and its nanocrystalline coating at 900 oC in O2 and O2 + 20%H2O environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 55
杨依凡, 孙文瑶, 陈明辉 等. 镍基单晶高温合金N5及其纳米晶涂层在900 ℃下O2和O2 + 20%H2O气氛中的氧化行为 [J]. 中国腐蚀与防护学报, 2023, 43: 55
doi: 10.11902/1005.4537.2022.040
10 Chen Y, Yao Z H, Dong J X, et al. Molecular dynamics simulation of the γ′ phase deformation behaviour in nickel-based superall-oys [J]. Mater. Sci. Technol., 2022, 38: 1439
11 Mukherji D, Gilles R, Strunz P, et al. Measurement of γ′ precipitate morphology by small angle neutron scattering [J]. Scr. Mater., 1999, 41: 31
12 Yang Y Q, Zhao Y C, Wen Z X, et al. Synergistic effect of multiple molten salts on hot corrosion behaviour of Ni-based single crystal superalloy [J]. Corros. Sci., 2022, 204: 110381
13 Montero X, Ishida A, Meißner T M, et al. Effect of surface treatment and crystal orientation on hot corrosion of a Ni-based single-crystal superalloy [J]. Corros. Sci., 2020, 166: 108472
14 Geng Y X, Mo Y, Zheng H Z, et al. Effect of laser shock peening on the hot corrosion behavior of Ni-based single-crystal superalloy at 750 oC [J]. Corros. Sci., 2021, 185: 109419
15 Liu C, Yang W C, Cao K L, et al. New insights into the microstructural stability based on the element segregation behavior at γ/γ′ interface in Ni-based single crystal superalloys with Ru addition [J]. J. Mater. Sci. Technol., 2023, 154: 232
16 Sun J Y, Li Q S, Guo H B, et al. Effect of interdiffusion between Ni-Al coating and substrate on microstructure stability of single crystal superalloy [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 497
孙井永, 李秋实, 郭洪波 等. Ni-Al涂层与单晶合金互扩散行为及其对界面合金组织稳定性的影响 [J]. 中国腐蚀与防护学报, 2016, 36: 497
doi: 10.11902/1005.4537.2016.130
17 Zhang J C, Lu F, Zhang C, et al. On the tungsten segregation at γ/γ′interface in a Ni-based single-crystal superalloy [J]. Vacuum, 2022, 197: 110863
18 Ding Q Q, Shen Z J, Xiang S S, et al. In-situ environmental TEM study of γ′-γ phase transformation induced by oxidation in a nickel-based single crystal superalloy [J]. J. Alloy. Compd., 2015, 651: 255
19 Sun X Y, Zhang L F, Pan Y M, et al. Microstructural evolution during cyclic oxidation of a Ni-based singe crystal superalloy at 1100 oC [J]. Corros. Sci., 2020, 162: 108216
20 Ren C L, Han H, Gong W B, et al. Adsorption and diffusion of fluorine on Cr-doped Ni(111) surface: fluorine-induced initial corrosion of non-passivated Ni-based alloy [J]. J. Nucl. Mater., 2016, 478: 295
21 Ding M Q, Hu P, Ru Y, et al. Effects of rare-earth elements on the oxidation behavior of γ-Ni in Ni-based single crystal superalloys: a first-principles study from a perspective of surface adsorption [J]. Appl. Surf. Sci., 2021, 547: 149173
22 Wei B X, Chen C J, Xu J, et al. Comparing the hot corrosion of (100), (210) and (110) Ni-based superalloys exposed to the mixed salt of Na2SO4-NaCl at 750 oC: experimental study and first-principles calculation [J]. Corros. Sci., 2022, 195: 109996
23 Pei H Q, Wen Z X, Li Z W, et al. Influence of surface roughness on the oxidation behavior of a Ni-4.0Cr-5.7Al single crystal superalloy [J]. Appl. Surf. Sci., 2018, 440: 790
24 Segall M D, Lindan P J D, Probert M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code [J]. J. Phys.: Condens. Matter, 2002, 14: 2717
25 Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple [J]. Phys. Rev. Lett., 1996, 77: 3865
doi: 10.1103/PhysRevLett.77.3865 pmid: 10062328
26 Grimme S. Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction [J]. J. Comput. Chem., 2006, 27: 1787
27 Pfrommer B G, Côté M, Louie S G, et al. Relaxation of crystals with the quasi-Newton method [J]. J. Comput. Phys., 1997, 131:233
28 Byrd R H, Nocedal J, Schnabel R B. Representations of quasi-Newton matrices and their use in limited memory methods [J]. Math. Program., 1994, 63: 129
29 Taylor A, Doyle N J. Further studies on the nickel-aluminium system. I. β-NiAl and δ-Ni2Al3 phase fields [J]. J. Appl. Crystallogr., 1972, 5: 201
30 Cao Y, Zhu P X, Zhu J C, et al. First-principles study of NiAl alloyed with Co [J]. Comput. Mater. Sci., 2016, 111: 34
31 Dudarev S L, Botton G A, Savrasov S Y, et al. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA + U study [J]. Phys. Rev., 1998, 57B: 1505
32 Lu T, Chen F W. Meaning and functional form of the electron localization function [J]. Acta Phys. -Chim. Sin., 2011, 27: 2786
33 Becke A D, Edgecombe K E. A simple measure of electron localization in atomic and molecular systems [J]. J. Chem. Phys., 1990, 92: 5397
34 Wang Z W, Pei H Q, Shang J, et al. First-principles thermodynamics and experimental study of interface oxidation in Ni/Ni3Al structures [J]. Phys. Chem. Chem. Phys., 2019, 21: 18316
35 Mishin Y, Farkas D. Atomistic simulation of point defects and diffusion in B2 NiAl: Part I. Point defect energetics [J]. Philos. Mag., 1997, 75A: 169
36 Liu C T, Ma J, Sun X F. Oxidation behavior of a single-crystal Ni-base superalloy between 900 and 1000 oC in air [J]. J. Alloy. Compd., 2010, 491: 522
37 Sato A, Chiu Y L, Reed R C. Oxidation of nickel-based single-crystal superalloys for industrial gas turbine applications [J]. Acta Mater., 2011, 59: 225
38 Schütze M. Corrosion and environmental degradation [J]. Prakt. Metallogr., 2000, 37: 2
[1] FAN Chunhua, WU Qianlin, XUE Shan, GE Jialu. Effect of Cr- and Si-addition on Oxidation Behavior of N80 Carbon Steel for Gas Injection Wells in Fire-flooding Oil Field[J]. 中国腐蚀与防护学报, 2025, 45(1): 231-236.
[2] GUO Jingbo, YANG Shouhua, ZHOU Ziyi, MU Rende, XIE Yun, SHU Xiaoyong, DAI Jianwei, PENG Xiao. High-temperature Oxidation Behavior of Laser Additively Manufactured AlCoCrFeNiSi High Entropy Alloy[J]. 中国腐蚀与防护学报, 2025, 45(1): 217-223.
[3] CHEN Hui, XU Fubin, FANG Yaxiong, ZHU Zhongliang. Oxidation Behavior of Super304H Stainless Steel in Supercritical Water at 605 and 640 oC[J]. 中国腐蚀与防护学报, 2025, 45(1): 209-216.
[4] ZHANG Caiyun, LI Shuai, BAO Zebin, ZHU Shenglong, WANG Fuhui. Stripping and Refurbishment of (Ni, Pt)Al Coating After Service for Different Oxidation Durations[J]. 中国腐蚀与防护学报, 2025, 45(1): 201-208.
[5] ZHANG Han, LIU Xuanzhen, HUANG Aihui, ZHAO Xiaofeng, LU Jie. Manufacturing and Research Progress in Metallic Bond Coats for Thermal Barrier Coatings[J]. 中国腐蚀与防护学报, 2025, 45(1): 20-32.
[6] WU Liangliang, YIN Ruozhan, CHEN Zhaoxu, LIANG Junyue, SUN Qingqing, WU Liankui, CAO Fahe. Preparation and High Temperature Oxidation Resistance of Zr-SiO2 Composite Coating on Ti45Al8.5Nb Alloy[J]. 中国腐蚀与防护学报, 2024, 44(6): 1423-1434.
[7] DONG Nan, QIN Weirong, HAN Peide. Theoretical Study in Adsorption Behavior of S and Cl on Surface and its Effect on Corrosion Performance of γ-FeM(111) (M = Cr, Ni, Mn, Mo, Cu, Ce)[J]. 中国腐蚀与防护学报, 2024, 44(6): 1566-1572.
[8] LI Jiaheng, QIAN Wei, ZHU Jingjing, CAI Jie, HUA Yinqun. Influence of Laser Shock Peening on Microstructure and Oxidation Performance of Nickel-based Single Crystal Superalloy[J]. 中国腐蚀与防护学报, 2024, 44(5): 1295-1304.
[9] ZHANG Bangyan, WU Hongbin, HU Xuegang, DONG Jiajian, ZHENG Shijie, YIN Weiwei, ZHANG Fangyu, TIAN Lixi, LIU Guangming. High Temperature Oxidation Behavior of FeCrAl/La2Zr2O7 Composites Prepared by Mechanical Alloying and Spark Plasma Sintering[J]. 中国腐蚀与防护学报, 2024, 44(4): 965-971.
[10] ZHU Huiwen, ZHENG Li, ZHANG Hao, YU Baoyi, CUI Zhibo. Effect of Be on Oxidation Behavior and Flame Retardancy of WE43 Mg-alloy at High-temperature[J]. 中国腐蚀与防护学报, 2024, 44(4): 1022-1028.
[11] FENG Kangkang, REN Yanjie, LV Yunlei, ZHOU Mengni, CHEN Jian, NIU Yan. Effect of Si Content on Oxidation Behavior of Quaternary Fe-20Ni-20Cr- ySi Alloys in Oxygen at 900oC[J]. 中国腐蚀与防护学报, 2024, 44(1): 100-106.
[12] YU Chenjun, ZHANG Tianyi, ZHANG Naiqiang, ZHU Zhongliang. Influence of Thermal Aging on Corrosion Behavior of Ferritic-martensitic Steel P92 in Supercritical Water[J]. 中国腐蚀与防护学报, 2023, 43(6): 1349-1357.
[13] LIU Shuyu, GENG Shujiang, WANG Jinlong, WANG Fuhui, SUN Qingyun, WU Yong, DUAN Haitao, XIA Siyao, XIA Chunhuai. High Temperature Oxidation and Solid Na2SO4 Induced Corrosion of CVD Aluminide Coating on K444 Alloy in Air[J]. 中国腐蚀与防护学报, 2023, 43(3): 553-560.
[14] HE Nankai, WANG Yongxin, ZHOU Shengguo, ZHOU Dapeng, LI Jinlong. Oxidation Behavior in Water Vapor and Tribological Property in Atmosphere with 60%Relative Humidity at 580 ℃ for Inconel 718 Alloy[J]. 中国腐蚀与防护学报, 2023, 43(2): 271-279.
[15] LIU Huanhuan, LIU Guangming, LI Futian, MENG Lingqi, XIAHOU Junzhao, GU Jialei. Oxidation Behavior of TP439 Stainless Steel in Water Vapor at 800 ℃[J]. 中国腐蚀与防护学报, 2023, 43(2): 377-383.
No Suggested Reading articles found!