Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (6): 1528-1536    DOI: 10.11902/1005.4537.2025.260
Current Issue | Archive | Adv Search |
Corrosion Behavior of Inconel 718 Alloy Without and with a Pre-deposits Film of Salts Mixture at 750 oC in Different Atmospheres
YE Jun1, LUO Xin1, ZHEN Xiansheng2, LI Xinping3, XIE Yun1(), PENG Xiao1
1 School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
2 Liyang Aero Power Co. Ltd. , AECC, Guiyang 550014, China
3 College of Engineering and Technology, Nanchang Vocational University, Nanchang 330500, China
Cite this article: 

YE Jun, LUO Xin, ZHEN Xiansheng, LI Xinping, XIE Yun, PENG Xiao. Corrosion Behavior of Inconel 718 Alloy Without and with a Pre-deposits Film of Salts Mixture at 750 oC in Different Atmospheres. Journal of Chinese Society for Corrosion and protection, 2025, 45(6): 1528-1536.

Download:  HTML  PDF(19038KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behavior of Inconel 718 alloy without and with a pre-deposits film of salt mixture of 75%Na2SO4 + 25%NaCl at 750 oC was assessed, in various atmospheres such as air, air-30%H2O, CO2 and CO2-30%H2O, respectively. The results show that the bare Inconel 718 alloy exhibits outstanding oxidation resistance in the atmospheres: air, CO2 and CO2-30%H2O, and the oxidation products scales are principally composed of a uniform and continuous Cr2O3 scale. The corresponding thickness of which is 0.4 ± 0.1, 1.2 ± 0.1 and (0.7 ± 0.1) μm, respectively. Beneath a salt deposits film, the alloy displays poor hot corrosion resistance in air, and the corresponding thickness of the corrosion products scale is (10.2 ± 2.9) μm. The corrosion became more serious as the alloy with pre-deposits film of salts mixture is exposed to air-30%H2O, and the thickness of the corrosion scale increases to (12.3 ± 3.6) μm. In the above two environments, the formed corrosion products scales are composed of Cr2O3 and minor Fe2O3. In addition, these scales are loose and porous, accompanied with severe spallation and internal sulfidation. Nevertheless, the alloy with pre-deposits film of salts mixture exhibits superior resistance against the hot corrosion induced by the salts mixture + atmosphere CO2-30%H2O. Correspondingly, the corrosion products scale is a continuous Cr2O3 scale of only (1.7 ± 0.4) μm in thickness, which provides sufficient protection for the alloy against the aggressive environment.

Key words:  Inconel 718 alloy      water vapor      high-temperature oxidation      hot corrosion     
Received:  18 August 2025      32134.14.1005.4537.2025.260
ZTFLH:  TG174  
Fund: Jiangxi Provincial Key Research and Development Program(20232BBE50007);Jiangxi Provincial Natural Science Foundation(20224BAB214018)
Corresponding Authors:  XIE Yun, E-mail: yun.xie@nchu.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2025.260     OR     https://www.jcscp.org/EN/Y2025/V45/I6/1528

Fig.1  Surface morphology of Inconel 718 alloy after electrolytic polishing
Fig.2  Mass change curves of Inconel 718 alloy corroded for 500 h without salt deposits (a) and for 100 h with salt deposits (b) in different atmospheres
Fig.3  XRD patterns of Inconel 718 alloy after corrosion without salt deposits for 500 h (a) and with salt deposits for 100 h (b) in different atmospheres
Fig.4  Macroscopic and cross-sectional morphologies of Inconel 718 alloy without salt deposits after 500 h oxidation in air (a1-a3), CO2 (b1-b3), CO2-30%H2O (c1-c3)
Fig.5  EDS elemental mappings of Inconel 718 alloy without salt deposits after 500 h oxidation in air (a), CO2 (b) and CO2-30%H2O (c)
Fig.6  Macroscopic and cross-sectional morphologies of Inconel 718 alloy with salt deposits after 100 h corrosion in air (a1-a3), air-30%H2O (b1-b3) and CO2-30%H2O (c1-c3)
Fig.7  EDS elemental mappings of Inconel 718 alloy with salt deposits after 100 h corrosion in air (a), air-30%H2O (b) and CO2-30%H2O (c)
Fig.8  Ellingham-Richardson diagram of the reactions of main alloying elements with molten Na2SO4 (a) and NaCl (b), respectively
[1] Ding H, Wu X D, Huang T, et al. Corrosion behavior of NiCrAlY coatings under alternating salt spray and high temperature environment [J]. J. Aeronaut. Mater., 2024, 44(6): 53
(丁 航, 吴旭东, 黄 婷 等. 盐雾-高温交替环境下NiCrAlY涂层的腐蚀行为 [J]. 航空材料学报, 2024, 44(6): 53)
[2] Zhang W D, Cui Y, Liu L, et al. Corrosion behavior of GH4169 alloy in NaCl solution spray environment at 600 oC [J]. Acta Metall. Sin., 2023, 59: 1475
(张伟东, 崔 宇, 刘 莉 等. 600 ℃ NaCl盐雾环境下GH4169合金的腐蚀行为 [J]. 金属学报, 2023, 59: 1475)
[3] Cao G Q, Chen C Y, Wan D Y, et al. Research progress on corrosion and protection of transition metal-based alloys in high temperature marine environment [J]. Surf. Technol., 2022, 51(5): 198
(曹国钦, 陈朝阳, 万冬阳 等. 高温海洋环境下过渡金属基合金的腐蚀与防护研究进展 [J]. 表面技术, 2022, 51(5): 198)
[4] Jiang Y M, Li S, Huang D, et al. Unveiling corrosion reaction mechanism of β-NiAl coating modified by platinum and hafnium in NaCl- or Na2SO4-containing mediums [J]. J. Mater. Sci. Technol., 2025, 237: 54
[5] Deng W K, Xu J H, Jiang L. Thermo-mechanical fatigue behavior of Inconel 718 superalloy [J]. Chin. J. Nonferrous Met., 2019, 29: 983
(邓文凯, 徐睛昊, 江 亮. IN718镍基高温合金的热机械疲劳性能 [J]. 中国有色金属学报, 2019, 29: 983)
[6] Mahobia G S, Paulose N, Singh V. Hot corrosion behavior of superalloy IN718 at 550 and 650 oC [J]. J. Mater. Eng. Perform., 2013, 22: 2418
[7] Madhusudan S, Epifano E, Favergeon J, et al. High temperature intergranular oxidation of nickel based superalloy Inconel 718 [J]. High Temp. Corros. Mater., 2024, 101: 873
[8] He N K, Wang Y X, Zhou S G, et al. Oxidation behavior in water vapor and tribological property in atmosphere with 60% relative humidity at 580 oC for Inconel 718 alloy [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 271
(贺南开, 王永欣, 周升国 等. Inconel 718合金在580 ℃下水蒸气环境中的氧化行为及摩擦学性能 [J]. 中国腐蚀与防护学报, 2023, 43: 271)
[9] Pradhan D, Shankar Mahobia G, Chattopadhyay K, et al. Salt induced corrosion behaviour of superalloy IN718 [J]. Mater. Today: Proc., 2018, 5: 7047
[10] Xie Y, Zhang J Q, Peng X. Research advances in high temperature corrosion of Ni-Cr alloys in CO2-rich environments [J]. Acta Metall. Sin., 2024, 60: 731
(谢 云, Zhang J Q, 彭 晓. Ni-Cr合金在富CO2气氛中的高温腐蚀研究进展 [J]. 金属学报, 2024, 60: 731)
[11] Du L X, Ding H, Xie Y. Research progress in high-temperature corrosion of Ni-base alloys in coal ash/flue gas [J]. J. Mater. Eng., 2025, 53: 106
(杜凌霄, 丁 航, 谢 云. 镍基合金在煤灰/烟气中的高温腐蚀研究进展. [J]. 材料工程, 2025, 53: 106)
[12] Nguyen T D, Zhang J Q, Young D J. Microstructures of chromia scales grown in CO2 [J]. Mater. High Temp., 2015, 32: 16
[13] Nguyen T D, La Fontaine A, Yang L M, et al. Atom probe study of impurity segregation at grain boundaries in chromia scales grown in CO2 gas [J]. Corros. Sci., 2018, 132: 125
[14] Nguyen T D, Xie Y, Ding S J, et al. Oxidation behavior of Ni-Cr alloys in CO2 at 700 oC [J]. Oxid. Met., 2017, 87: 605
[15] Abellán J P, Olszewski T, Meier G H, et al. The oxidation behaviour of the 9%Cr steel P92 in CO2- and H2O-rich gases relevant to oxyfuel environments [J]. Int. J. Mater. Res., 2010, 101: 287
[16] Anghel C, Hörnlund E, Hultquist G, et al. Gas phase analysis of CO interactions with solid surfaces at high temperatures [J]. Appl. Surf. Sci., 2004, 233: 392
[17] Hu Q, Geng S J, Wang J L, et al. Hot corrosion behavior of Inconel 718 without and with aluminide coating in air beneath a thin film of salt mixture of Na2SO4 + 5%NaCl [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 623
(胡 琪, 耿树江, 王金龙 等. Inconel 718及其渗铝涂层在Na2SO4 +5%NaCl混合盐膜下的热腐蚀行为 [J]. 中国腐蚀与防护学报, 2024, 44: 623)
[18] Cheng J, Wu Y P, Shen W, et al. A study on hot corrosion performance of high velocity arc-sprayed FeCrNiAlMnB/Cr3C2 coating exposed to Na2SO4 + K2SO4 and Na2SO4 + NaCl [J]. Surf. Coat. Technol., 2020, 397: 126015
[19] Li L, Lu J, Liu X Z, et al. Al x CoCrFeNi high entropy alloys with superior hot corrosion resistance to Na2SO4 + 25% NaCl at 900 oC [J]. Corros. Sci., 2021, 187: 109479
[20] Yu Z, Yang S S, Xie L P, et al. Effect of water vapor content on the corrosion mechanism of HR3C in simulated oxy-coal combustion environment [J]. Corros. Sci., 2024, 231: 111964
[21] Yang Y F, Sun W Y, Chen M H, et al. Oxidation behavior of a single crystal Ni-based superalloy N5 and its nanocrystalline coating at 900 oC in O2 and O2 + 20%H2O environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 55
(杨依凡, 孙文瑶, 陈明辉 等. 镍基单晶高温合金N5及其纳米晶涂层在900 ℃下O2和O2 + 20%H2O气氛中的氧化行为 [J]. 中国腐蚀与防护学报, 2023, 43: 55)
[1] ZHUANG Zhaotao, YAN Haojie, XIE Bing, GUI Ye, SUN Qingqing, WU Liankui, CAO Fahe. High-temperature Oxidation Behavior of Liquid-phase Fluorination Treated Ti45Al8.5Nb Alloy[J]. 中国腐蚀与防护学报, 2025, 45(6): 1517-1527.
[2] PENG Wang, CHEN Jian, YANG Lingxu, LIU Huijun, LIANG Jianping, ZENG Chaoliu. Effect of NaCl on Hot Corrosion Behavior of 347H Stainless Steel and Ni-based GH3539 Alloy in Molten Nitrate Salts[J]. 中国腐蚀与防护学报, 2025, 45(6): 1610-1618.
[3] BAI Yingxiong, WANG Yanli, LI Xiangwei, WU Zefeng, ZHANG Shuyan. Effect of Heat Treatment on Hot Corrosion Behavior of Selective Laser Melted GH4099 Nickel-based Superalloy Beneath (75%Na2SO4 + 25%NaCl) Deposits in Air at 900 oC[J]. 中国腐蚀与防护学报, 2025, 45(6): 1709-1716.
[4] ZHAO Xinyu, LIU Enze, ZHANG Gong, ZHAO Yuan, NING Likui, XIN Xin, JIA Dan, LIU Weihua, TAN Zheng. Hot Corrosion Behavior of Brazed Joints of Single Crystal Ni-based DD10 Alloy Beneath Na2SO4 Deposit in Air at 850 and 900 ℃[J]. 中国腐蚀与防护学报, 2025, 45(5): 1361-1370.
[5] ZHANG Han, LIU Xuanzhen, HUANG Aihui, ZHAO Xiaofeng, LU Jie. Manufacturing and Research Progress in Metallic Bond Coats for Thermal Barrier Coatings[J]. 中国腐蚀与防护学报, 2025, 45(1): 20-32.
[6] ZHANG Yongkang, ZHAI Haimin, LI Xuqiang, LI Wensheng. Hot Corrosion Behavior of Fe-based Amorphous Coatings in Mixed Salts of Na2SO4 + K2SO4 and Na2SO4 + NaCl[J]. 中国腐蚀与防护学报, 2025, 45(1): 92-102.
[7] HUANG Qinying, LI Yuzhuo, YANG Yingfei, REN Pan, WANG Qiwei. Hot Corrosion Behavior of Pt Modified AlCoCrFeNi2.1 Eutectic High Entropy Alloy[J]. 中国腐蚀与防护学报, 2025, 45(1): 115-126.
[8] WANG Yue, GENG Shujiang, WANG Jinlong, WANG Fuhui, SUN Qingyun, WU Yong, XIA Siyao. Corrosion Resistance of CVD Aluminized Coating on K444 Alloy Beneath a Thin Deposits of 95%Na2SO4 + 5%NaCl at High Temperature[J]. 中国腐蚀与防护学报, 2025, 45(1): 127-136.
[9] PEI Haiqing, XIAO Jingbo, LI Wei, YU Haoyu, WEN Zhixun, YUE Zhufeng. First Principles Study on Effect of Al-O Element Aggregation on Oxidation of a Ni-based Single Crystal Superalloy[J]. 中国腐蚀与防护学报, 2025, 45(1): 173-181.
[10] ZHANG Caiyun, LI Shuai, BAO Zebin, ZHU Shenglong, WANG Fuhui. Stripping and Refurbishment of (Ni, Pt)Al Coating After Service for Different Oxidation Durations[J]. 中国腐蚀与防护学报, 2025, 45(1): 201-208.
[11] CHEN Hui, XU Fubin, FANG Yaxiong, ZHU Zhongliang. Oxidation Behavior of Super304H Stainless Steel in Supercritical Water at 605 and 640 oC[J]. 中国腐蚀与防护学报, 2025, 45(1): 209-216.
[12] GUO Jingbo, YANG Shouhua, ZHOU Ziyi, MU Rende, XIE Yun, SHU Xiaoyong, DAI Jianwei, PENG Xiao. High-temperature Oxidation Behavior of Laser Additively Manufactured AlCoCrFeNiSi High Entropy Alloy[J]. 中国腐蚀与防护学报, 2025, 45(1): 217-223.
[13] YU Zheng, CHEN Minghui, WANG Jinlong, YANG Shasha, WANG Fuhui. Influence of Alkali Metal Sulfate- and Chloride-salts Content in Artificial Coal Ash on Corrosion Behavior of HR3C Steels With and Without Aluminizing[J]. 中国腐蚀与防护学报, 2024, 44(6): 1389-1398.
[14] WU Liangliang, YIN Ruozhan, CHEN Zhaoxu, LIANG Junyue, SUN Qingqing, WU Liankui, CAO Fahe. Preparation and High Temperature Oxidation Resistance of Zr-SiO2 Composite Coating on Ti45Al8.5Nb Alloy[J]. 中国腐蚀与防护学报, 2024, 44(6): 1423-1434.
[15] ZHANG Jinlong, FU Guangyan, NING Likui, LIU Enze, TAN Zheng, TONG Jian, ZHENG Zhi. Hot Corrosion Behavior of a Nickel Based Single Crystal High Temperature Alloy Subjected to Different Heat Treatments[J]. 中国腐蚀与防护学报, 2024, 44(6): 1625-1632.
No Suggested Reading articles found!