Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (1): 20-32    DOI: 10.11902/1005.4537.2024.267
Current Issue | Archive | Adv Search |
Manufacturing and Research Progress in Metallic Bond Coats for Thermal Barrier Coatings
ZHANG Han, LIU Xuanzhen, HUANG Aihui, ZHAO Xiaofeng, LU Jie()
Shanghai Key Laboratory of Advanced High-Temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Cite this article: 

ZHANG Han, LIU Xuanzhen, HUANG Aihui, ZHAO Xiaofeng, LU Jie. Manufacturing and Research Progress in Metallic Bond Coats for Thermal Barrier Coatings. Journal of Chinese Society for Corrosion and protection, 2025, 45(1): 20-32.

Download:  HTML  PDF(14840KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Thermal barrier coatings (TBCs) are widely used to protect the key components of areo- and land-based turbine engines, which is a key technology and an important means to improve engines efficiency and extend service life. The bond coat, as an important component of the TBC system, can relieve the thermal mismatch between the ceramic topcoat and the superalloy substrate, and improve the thermal stability of the thermal barrier coating system. On the other hand, it protects the superalloy substrate from oxidation and corrosion at high temperatures by forming a dense and continuous of Al2O3 layer. Therefore, the service life of the TBCs is predominantly dependent on the performance of bond coat. In this paper, the research progress on the conventional bond coat materials and preparation methods, as well as their advantages and disadvantages are introduced. The newly high-entropy alloy bond coat system is introduced with emphasis on the research progress of composition design, structure and oxidation resistance, as well as its deficiencies. Finally, the research trend of high entropy alloy bond coat materials is prospected.

Key words:  thermal barrier coatings      metallic bond coat      high-temperature oxidation      NiAl      MCrAlY      high-entropy alloy     
Received:  25 August 2024      32134.14.1005.4537.2024.267
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(52201082; 51971139)
Corresponding Authors:  LU Jie, E-mail: lu-jie@sjtu.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.267     OR     https://www.jcscp.org/EN/Y2025/V45/I1/20

Fig.1  Phase diagram of Ni-Al binary system[18] (a), and isothermal phase diagram at 1100 oC[22] (b) and oxide map at 1150 oC[19] (c) for Ni-Pt-Al ternary system
Fig.2  Cross-sectional microstructures of two types of NiPtAl coatings: (a) inward grown coating[16], (b) outward grown coating[23]
MCrAlYElemental compositionApplication
TypeProductCoNiCrAlYHfSi
CoNiCrAlYAmdry 995Bal.322180.5--CPW 528
Diamalloy 4700GE B50TF195 Class A
GE B50AG5 Class B
NiCrAlYAmdry 962-Bal.22101--MSRR 9507/47
GE B50A892/B50AG6
GE B50TF162 Class A
NiCoCrAlYAmdry 36523Bal.17120.6--PWA 1365-2/1376
CPW 387
Amdry 38622Bal.17120.50.50.4PWA 1384
PWA 1386
Chromally C-77
Table 1  Commercial MCrAlY products used in industrial gas turbine and aero-engine[41]
ManufacturingAdvantagesDisadvantages
APSStable spraying process. The matrix is less heated and theHigh porosity. Metal particles would be
sample is not easy to deformseriously oxidized during spraying
LPPS/VPSLow porosity. Effectively prevent oxidation ofNeed low vacuum/vacuum environment
metal particles during sprayingand high cost
HVOF/HVAFLow spraying temperature and fast particle flight speed.Large fuel consumption and
The coating has high density and low oxygen contentrelatively high cost
EB-PVDGood uniformity, high density and less defectsThe equipment is expensive and
complex to operate
AIPHigh density, fast deposition rate, relatively simpleThe coating is easy to have large
equipment and low costparticle pollution
Table 2  The advantages and disadvantages of manufacturing for MCrAlY coatings
Fig.3  Microstructures of MCrAlY coatings deposited by LPPS (a), HVOF[53] (b) and EB-PVD[44] (c)
Fig.4  Nano-sized coherent A2/B2 phase microstructure of AlCoCrFeNi HEA[67]: (a, b) high-angle annular dark-field (HAADF) STEM images of an ID region and a DR region, (c) selected-area diffraction patterns (SADPs), (d, e) corresponding dark-field (DF) TEM images
Fig.5  Phase transformation and microstructures of AlCoCrFeNi and AlCoCr0.8FeNi HEAs[70]: (a) XRD patterns of the samples with different cooling process, (b) DSC curves, (c, d) STEM-EDS and HRTEM images of the Al-depleted layer in AlCoCrFeNi HEA (1200 oC/50 h), (e) SADPs of the bright and dark phases
Fig.6  TEM analysis of the AlCoCrFeNiY HEA bond coat[79]: (a-e) STEM-HAADF images, (d1, d2) SADPs of γ and β phases
1 Padture N P, Gell M, Jordan E H. Thermal barrier coatings for gas-turbine engine applications [J]. Science, 2002, 296: 280
pmid: 11951028
2 Clarke D R, Phillpot S R. Thermal barrier coating materials [J]. Mater. Today, 2005, 8: 22
3 Guo H B, Gong S K, Xu H B. Progress in thermal barrier coatings for advanced aeroengines [J]. Mater. China, 2009, 28(9-10): 18
郭洪波, 宫声凯, 徐惠彬. 先进航空发动机热障涂层技术研究进展 [J]. 中国材料进展, 2009, 28(9-10): 18
4 Bao Z B, Jiang C Y, Zhu S L, et al. High temperature protective bond coats: development and effect of reactive element [J]. J. Aeronaut. Mater., 2018, 38(2): 21
鲍泽斌, 蒋成洋, 朱圣龙 等. 高温防护金属涂层的发展及活性元素效应 [J]. 航空材料学报, 2018, 38(2): 21
doi: 10.11868/j.issn.1005-5053.2018.001004
5 Zheng L, Guo H B, Guo L, et al. New generation thermal barrier coatings for ultrahigh temperature applications [J]. J. Aeronaut. Mater., 2012, 32(6): 14
郑 蕾, 郭洪波, 郭 磊 等. 新一代超高温热障涂层研究 [J]. 航空材料学报, 2012, 32(6): 14
6 Guo H B, Gong S K, Xu H B. Research progress on new high/ultra-high temperature thermal barrier coatings and processing technologies [J]. Acta Aeronaut. Astronaut. Sin., 2014, 35: 2722
郭洪波, 宫声凯, 徐惠彬. 新型高温/超高温热障涂层及制备技术研究进展 [J]. 航空学报, 2014, 35: 2722
doi: 10.7527/S1000-6893.2014.0161
7 Tolpygo V K, Clarke D R. On the rumpling mechanism in nickel-aluminide coatings: part II: characterization of surface undulations and bond coat swelling [J]. Acta Mater., 2004, 52: 5129
8 Wu R T, Wang X, Atkinson A. On the interfacial degradation mechanisms of thermal barrier coating systems: effects of bond coat composition [J]. Acta Mater., 2010, 58: 5578
9 Yang Y F, Jiang C Y, Yao H R, et al. Cyclic oxidation and rumpling behaviour of single phase β-(Ni, Pt)Al coatings with different thickness of initial Pt plating [J]. Corros. Sci., 2016, 111: 162
10 Mumm D R, Evans A G. On the role of imperfections in the failure of a thermal barrier coating made by electron beam deposition [J]. Acta Mater., 2000, 48: 1815
11 Cao F, Tryon B, Torbet C J, et al. Microstructural evolution and failure characteristics of a NiCoCrAlY bond coat in “hot spot” cyclic oxidation [J]. Acta Mater., 2009, 57: 3885
12 Wang S X, Li J C, Wang Q T, et al. Application and development of platinum modified aluminide coating [J]. Therm. Spray Technol., 2020, 12(3): 18
王世兴, 李建超, 王秋童 等. 铂改性铝化物涂层的应用与发展 [J]. 热喷涂技术, 2020, 12(3): 18
13 Nicholls J E. Hot-dipped aluminium coatings [J]. Anti-Corros. Methods Mater., 1964, 11: 16
14 Nicholls J R. Advances in coating design for high-performance gas turbines [J]. MRS Bull., 2003, 28: 659
15 Yu C T, Yang Y F, Bao Z B, et al. Research progress in preparation and development of excellent bond coats for advanced thermal barrier coatings [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 395
余春堂, 阳颖飞, 鲍泽斌 等. 先进高温热障涂层用高性能粘接层制备及研究进展 [J]. 中国腐蚀与防护学报, 2019, 39: 395
doi: 10.11902/1005.4537.2019.154
16 Das D K. Microstructure and high temperature oxidation behavior of Pt-modified aluminide bond coats on Ni-base superalloys [J]. Prog. Mater. Sci., 2013, 58: 151
17 Zhang Y, Haynes J A, Wright G, et al. Effects of Pt incorporation on the isothermal oxidation behavior of chemical vapor deposition aluminide coatings [J]. Metall. Mater. Trans., 2001, 32A: 1727
18 Pint B A. The role of chemical composition on the oxidation performance of aluminide coatings [J]. Surf. Coat. Technol., 2004, 188-189: 71
19 Gleeson B, Mu N, Hayashi S. Compositional factors affecting the establishment and maintenance of Al2O3 scales on Ni-Al-Pt systems [J]. J. Mater. Sci., 2009, 44: 1704
20 Shirvani K, Rashidghamat A. Evolution of oxide scale on aluminide and Pt-aluminide coatings exposed to type I (870 oC) hot corrosion [J]. Oxid. Met., 2016, 85: 75
21 Tawancy H M, Abbas N M, Rhys-Jones T N. Role of platinum in aluminide coatings [J]. Surf. Coat. Technol., 1991, 49: 1
22 Hayashi S, Ford S I, Young D J, et al. α-NiPt(Al) and phase equilibria in the Ni-Al-Pt system at 1150 oC [J]. Acta Mater., 2005, 53: 3319
23 Tolpygo V K, Murphy K S, Clarke D R. Effect of Hf, Y and C in the underlying superalloy on the rumpling of diffusion aluminide coatings [J]. Acta Mater., 2008, 56: 489
24 Tolpygo V K, Clarke D R. Surface rumpling of a (Ni, Pt)Al bond coat induced by cyclic oxidation [J]. Acta Mater., 2000, 48: 3283
25 Sato A, Harada H, Kawagishi K. Development of a new bond coat “EQ coating” system [J]. Metall. Mater. Trans., 2006, 37A: 789
26 Goward G W, Boone D H. Mechanisms of formation of diffusion aluminide coatings on nickel-base superalloys [J]. Oxid. Met., 1971, 3: 475
27 Zhang Y, Pint B A, Haynes J A, et al. A platinum-enriched γ + γ′ two-phase bond coat on Ni-based superalloys [J]. Surf. Coat. Tech‐nol., 2005, 200: 1259
28 Hemker K J, Nix W D. High-temperature creep of the intermetallic alloy Ni3Al [J]. Metall. Trans., 1993, 24A: 335
29 Zhao X, Shapiro I P, Xiao P. Spinel formation in thermal barrier systems with a Pt-enriched γ-Ni + γ′-Ni3Al bond coat [J]. Surf. Coat. Technol., 2008, 202: 2905
30 Pint B A. Experimental observations in support of the dynamic segregation theory to explain the reactive-element effect [J]. Oxid. Met., 1996, 45: 1
31 Pint B A, Alexander K B. Grain boundary segregation of cation dopants in α‐Al2O3 scales [J]. J. Electrochem. Soc., 2019, 145: 1819
32 Zhang T, Guo H B, Gong S K, et al. Effects of Dy on the adherence of Al2O3/NiAl interface: a combined first-principles and experimental studies [J]. Corros. Sci., 2013, 66: 59
33 Li D Q, Guo H B, Wang D, et al. Cyclic oxidation of β-NiAl with various reactive element dopants at 1200 oC [J]. Corros. Sci., 2013, 66: 125
34 Zhao C S, Zhou Y H, Zou Z H, et al. Effect of alloyed Lu, Hf and Cr on the oxidation and spallation behavior of NiAl [J]. Corros. Sci., 2017, 126: 334
35 Zhao C S, Luo L R, Lu J, et al. Investigation on the performance of air plasma sprayed thermal barrier coating with Lu/Hf-doped NiAl bond coat [J]. Surf. Coat. Technol., 2019, 360: 140
36 Guo H B, Li D Q, Zheng L, et al. Effect of co-doping of two reactive elements on alumina scale growth of β-NiAl at 1200 oC [J]. Corros. Sci., 2014, 88: 197
37 He J, Peng H, Gong S K, et al. Synergistic effect of reactive element co-doping in two-phase (γ′ + β)Ni-Al alloys [J]. Corros. Sci., 2017, 120: 130
38 Lan H, Zhang W G, Yang Z G. Investigation of Pt-Dy co-doping effects on isothermal oxidation behavior of (Co, Ni)-based alloy [J]. J. Rare Earths, 2012, 30: 928
39 He J, Guo H B, Zhang Y L, et al. Improved hot-corrosion resistance of Si/Cr co-doped NiAlDy alloy in simulative sea-based engine environment [J]. Corros. Sci., 2014, 85: 232
40 Meng X X, Pei Y W, Shao W, et al. Cyclic oxidation behaviour of Co/Si co-doped β-NiAl coating on nickel based superalloys [J]. Corros. Sci., 2018, 133: 112
41 Chen W J, Song P, Gao D, et al. Metallic bond coats for thermally sprayed thermal barrier coatings applied to aero-engines and industrial gas turbines: review and prospect [J]. J. Aeronaut. Mater., 2022, 42(1): 15
陈卫杰, 宋 鹏, 高 栋 等. 航空发动机和工业燃气轮机热喷涂热障涂层用金属黏结层: 回顾与展望 [J]. 航空材料学报, 2022, 42 (1): 15
doi: 10.11868/j.issn.1005-5053.2021.000217
42 Evans A G, Mumm D R, Hutchinson J W, et al. Mechanisms controlling the durability of thermal barrier coatings [J]. Prog. Mater. Sci., 2001, 46: 505
43 Liu X Z, Chen Y, Lu J, et al. A comparative study on the oxidation behavior of Y-, Hf- and YHf-doped NiCoCrAl alloys: effect of reactive elements [J]. Corros. Sci., 2023, 218: 111160
44 Sloof W G, Nijdam T J. On the high-temperature oxidation of MCrAlY coatings [J]. Int. J. Mater. Res., 2009, 100: 1318
45 Brady M P, Wright I G, Gleeson B. Alloy design strategies for promoting protective oxide-scale formation [J]. JOM, 2000, 52: 16
46 Achar D R G, Munoz-Arroyo R, Singheiser L, et al. Modelling of phase equilibria in MCrAlY coating systems [J]. Surf. Coat. Technol., 2004, 187: 272
47 Raffaitin A, Crabos F, Andrieu E, et al. Advanced burner-rig test for oxidation-corrosion resistance evaluation of MCrAlY/superalloys systems [J]. Surf. Coat. Technol., 2006, 201: 3829
48 Czech N, Schmitz F, Stamm W. Microstructural analysis of the role of rhenium in advanced MCrAlY coatings [J]. Surf. Coat. Technol., 1995, 76-77: 28
49 Sundman B, Jansson B, Andersson J-O. The Thermo-Calc databank system [J]. Calphad, 1985, 9: 153
50 Dupin N, Sundman B. A thermodynamic database for Ni‐base superalloys [J]. Scand. J. Metall., 2001, 30: 184
51 Zhao C S. Study on preparation and oxidation resistance of reactive element doped NiAl bond coat [D]. Shanghai: Shanghai Jiao Tong University, 2019
赵春山. 活性元素掺杂 NiAl 粘结层制备及抗氧化性能研究 [D]. 上海: 上海交通大学, 2019
52 Lu J, Zhang H, Chen Y, et al. Effect of microstructure of a NiCoCrAlY coating fabricated by high-velocity air fuel on the isothermal oxidation [J]. Corros. Sci., 2019, 159: 108126
53 Chen Y, Zhao X F, Xiao P. Effect of microstructure on early oxidation of MCrAlY coatings [J]. Acta Mater., 2018, 159: 150
54 Meng G H, Liu H, Liu M J, et al. Large-grain α-Al2O3 enabling ultra-high oxidation-resistant MCrAlY bond coats by surface pre-agglomeration treatment [J]. Corros. Sci., 2020, 163: 108275
55 Yang Y F, Yao H R, Bao Z B, et al. Modification of NiCoCrAlY with Pt: part I. Effect of Pt depositing location and cyclic oxidation performance [J]. J. Mater. Sci. Technol., 2019, 35: 341
doi: 10.1016/j.jmst.2018.09.039
56 Li Y Y, Zhang C, Ji H Z, et al. Pt-modification on the thermal cycling behavior of NiCoCrAlYTa coating: a case study [J]. Corros. Sci., 2024, 230: 111934
57 Zhen H J, Peng X. A new approach to manufacture oxidation-resistant NiCrAl overlay coatings by electrodeposition [J]. Corros. Sci., 2019, 150: 121
58 Tian L X, Peng X. Research progress of a novel nano-composited MCrAl(Y) coating prepared by electrodepostion [J]. Surf. Technol., 2022, 51(9): 74
田礼熙, 彭 晓. 电沉积新型纳米复合MCrAl(Y)涂层的研究进展 [J]. 表面技术, 2022, 51(9): 74
59 Jiang S M, Xu C Z, Li H Q, et al. High temperature corrosion behaviour of a gradient NiCoCrAlYSi coating I: microstructure evolution [J]. Corros. Sci., 2010, 52: 1746
60 Yu D Q, Lu X Y, Ma J, et al. Study of oxidation behavior of the gradient NiCrAlY coating at 1000 and 1100 oC [J]. Acta Metall. Sin., 2012, 48: 759
于大千, 卢旭阳, 马 军 等. 梯度NiCrAlY涂层的1000和1100 ℃氧化行为研究 [J]. 金属学报, 2012, 48: 759
doi: 10.3724/SP.J.1037.2012.00024
61 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
62 Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, 375A-377A: 213
63 Miracle D B, Tsai M H, Senkov O N, et al. Refractory high entropy superalloys (RSAs) [J]. Scr. Mater., 2020, 187: 445
64 Hsu W L, Tsai C W, Yeh A C, et al. Clarifying the four core effects of high-entropy materials [J]. Nat. Rev. Chem., 2024, 8: 471
65 Li Y, Shi P J, Wang M Y, et al. Unveiling microstructural origins of the balanced strength-ductility combination in eutectic high-entropy alloys at cryogenic temperatures [J]. Mater. Res. Lett., 2022, 10: 602
66 Yan X H, Zou Y, Zhang Y. Properties and processing technologies of high-entropy alloys [J]. Mater. Futures, 2022, 1: 022002
67 Lu J, Chen Y, Zhang H, et al. Effect of Al content on the oxidation behavior of Y/Hf-doped AlCoCrFeNi high-entropy alloy [J]. Corros. Sci., 2020, 170: 108691
68 Lu J, Ren G L, Chen Y, et al. Unraveling the oxidation mechanism of an AlCoCrFeNi high-entropy alloy at 1100 oC [J]. Corros. Sci., 2022, 209: 110736
69 Lu J, Zhang H, Li L, et al. Y-Hf co-doped Al1.1CoCr0.8FeNi highentropy alloy with excellent oxidation resistance and nanostructure stability at 1200 oC [J]. Scr. Mater., 2021, 203: 114105
70 Huang A H, Li L, Liu X Z, et al. Phase transformation-induced TGO rumpling failure of an AlCoCrFeNi high-entropy alloy after isothermal oxidation at 1200 oC [J]. Scr. Mater., 2024, 239: 115817
71 Lu J, Chen Y, Zhang H, et al. Y/Hf-doped Al0.7CoCrFeNi high-entropy alloy with ultra oxidation and spallation resistance at 1200 oC [J]. Corros. Sci., 2020, 174: 108803
72 Lu Y P, Dong Y, Guo S, et al. A promising new class of high-temperature alloys: eutectic high-entropy alloys [J]. Sci. Rep., 2014, 4: 6200
doi: 10.1038/srep06200 pmid: 25160691
73 Huang L F, Sun Y N, Chen N, et al. Simultaneously enhanced strength-ductility of AlCoCrFeNi2.1 eutectic high-entropy alloy via additive manufacturing [J]. Mater. Sci. Eng., 2022, 830A: 142327
74 Chanda B, Potnis G, Jana P P, et al. A review on nano-/ultrafine advanced eutectic alloys [J]. J. Alloy. Compd., 2020, 827: 154226
75 Tiwary C S, Pandey P, Sarkar S, et al. Five decades of research on the development of eutectic as engineering materials [J]. Prog. Mater. Sci., 2022, 123: 100793
76 Lu J, Zhang H, Li L, et al. Y-Hf co-doped AlCoCrFeNi2.1 eutectic high-entropy alloy with excellent oxidation and spallation resistance under thermal cycling conditions at 1100 oC and 1200 oC [J]. Corros. Sci., 2021, 187: 109515
77 Lu J, Zhang H, Chen Y, et al. Y-doped AlCoCrFeNi2.1 eutectic highentropy alloy with excellent oxidation resistance and structure stability at 1000 oC and 1100 oC [J]. Corros. Sci., 2021, 180: 109191
78 Lu J, Zhang H, Ren G L, et al. A comparative study on the oxida tion behavior and failure mechanisms of conventional NiCoCrAl alloy and in-situ composite AlCoCrFeNi2.1 eutectic high-entropy alloy at 1300 oC [J]. Composites, 2024, 269B: 111097
79 Lu J, Chen Y, Li L, et al. An in-situ oxide-dispersion-strengthened AlCoCrFeNiY high-entropy alloy composite coating prepared by AC-HVAF with superior oxidation and spallation resistance [J]. Composites, 2023, 265B: 110933
80 Lu J, Chen Y, Sun Z H, et al. Air plasma sprayed high-entropy AlCoCrFeNiY coating with excellent oxidation and spallation resistance under cyclic oxidation at 1050-1150 oC [J]. Corros. Sci., 2022, 198: 110151
81 Ma T, Huang T H, Hua C, et al. Study on gradient structure and interface mechanical properties of n-8YSZ/AlCoCrFeNi high-entropy coatings [J]. Ceram. Int., 2023, 49: 10305
82 Wang L Q, Zhang F Y, Yan S, et al. Microstructure evolution and mechanical properties of atmosphere plasma sprayed AlCoCrFeNi high-entropy alloy coatings under post-annealing [J]. J. Alloy. Compd., 2021, 872: 159607
83 Meghwal A, Singh S, Anupam A, et al. Nano- and micro-mechanical properties and corrosion performance of a HVOF sprayed AlCoCrFeNi high-entropy alloy coating [J]. J. Alloy. Compd., 2022, 912: 165000
84 Zhang X, Zhang H F, Zhang N N, et al. Oxidation behavior of AlCoCrFeNi bond coating in the YSZ-TBCs produced by APS and PS-PVD method [J]. Ceram. Int., 2024, 50: 17190
85 Ossiansson M, Gupta M, Löbel M, et al. Assessment of CrFeCoNi and AlCrFeCoNi high-entropy alloys as bond coats for thermal barrier coatings [J]. J. Therm. Spray Technol., 2022, 31: 1404
[1] HUANG Qinying, LI Yuzhuo, YANG Yingfei, REN Pan, WANG Qiwei. Hot Corrosion Behavior of Pt Modified AlCoCrFeNi2.1 Eutectic High Entropy Alloy[J]. 中国腐蚀与防护学报, 2025, 45(1): 115-126.
[2] GUO Jingbo, YANG Shouhua, ZHOU Ziyi, MU Rende, XIE Yun, SHU Xiaoyong, DAI Jianwei, PENG Xiao. High-temperature Oxidation Behavior of Laser Additively Manufactured AlCoCrFeNiSi High Entropy Alloy[J]. 中国腐蚀与防护学报, 2025, 45(1): 217-223.
[3] CHEN Hui, XU Fubin, FANG Yaxiong, ZHU Zhongliang. Oxidation Behavior of Super304H Stainless Steel in Supercritical Water at 605 and 640 oC[J]. 中国腐蚀与防护学报, 2025, 45(1): 209-216.
[4] PEI Haiqing, XIAO Jingbo, LI Wei, YU Haoyu, WEN Zhixun, YUE Zhufeng. First Principles Study on Effect of Al-O Element Aggregation on Oxidation of a Ni-based Single Crystal Superalloy[J]. 中国腐蚀与防护学报, 2025, 45(1): 173-181.
[5] ZHANG Caiyun, LI Shuai, BAO Zebin, ZHU Shenglong, WANG Fuhui. Stripping and Refurbishment of (Ni, Pt)Al Coating After Service for Different Oxidation Durations[J]. 中国腐蚀与防护学报, 2025, 45(1): 201-208.
[6] WU Liangliang, YIN Ruozhan, CHEN Zhaoxu, LIANG Junyue, SUN Qingqing, WU Liankui, CAO Fahe. Preparation and High Temperature Oxidation Resistance of Zr-SiO2 Composite Coating on Ti45Al8.5Nb Alloy[J]. 中国腐蚀与防护学报, 2024, 44(6): 1423-1434.
[7] CHENG Yonghe, FU Junwei, ZHAO Maomi, SHEN Yunjun. Research Progress on Corrosion Resistance of High-entropy Alloys[J]. 中国腐蚀与防护学报, 2024, 44(5): 1100-1116.
[8] PAN Zongyu, LIU Jing, JIANG Zhizhong, LUO Lin, JIA Hanbing, LIU Xinyu. Corrosion Behavior of Fe34Cr30Mo15Ni15Nb3Al3 High-entropy Alloy in Molten Pb-Bi Eutectic Containing 10-6% Oxygen at 500oC[J]. 中国腐蚀与防护学报, 2024, 44(5): 1353-1360.
[9] DU Guang, LU Guoqiang, DENG Longhui, JIANG Jianing, CAO Xueqiang. Effect of Aluminum Content on Corrosion Behavior of Ni-Al Alloys in Dilute Sulfuric Acid Solution[J]. 中国腐蚀与防护学报, 2024, 44(4): 1011-1021.
[10] ZHU Huiwen, ZHENG Li, ZHANG Hao, YU Baoyi, CUI Zhibo. Effect of Be on Oxidation Behavior and Flame Retardancy of WE43 Mg-alloy at High-temperature[J]. 中国腐蚀与防护学报, 2024, 44(4): 1022-1028.
[11] YU Chenjun, ZHANG Tianyi, ZHANG Naiqiang, ZHU Zhongliang. Influence of Thermal Aging on Corrosion Behavior of Ferritic-martensitic Steel P92 in Supercritical Water[J]. 中国腐蚀与防护学报, 2023, 43(6): 1349-1357.
[12] LIU Shuyu, GENG Shujiang, WANG Jinlong, WANG Fuhui, SUN Qingyun, WU Yong, DUAN Haitao, XIA Siyao, XIA Chunhuai. High Temperature Oxidation and Solid Na2SO4 Induced Corrosion of CVD Aluminide Coating on K444 Alloy in Air[J]. 中国腐蚀与防护学报, 2023, 43(3): 553-560.
[13] HE Nankai, WANG Yongxin, ZHOU Shengguo, ZHOU Dapeng, LI Jinlong. Oxidation Behavior in Water Vapor and Tribological Property in Atmosphere with 60%Relative Humidity at 580 ℃ for Inconel 718 Alloy[J]. 中国腐蚀与防护学报, 2023, 43(2): 271-279.
[14] YANG Yifan, SUN Wenyao, CHEN Minghui, WANG Jinlong, WANG Fuhui. Oxidation Behavior of a Single Crystal Ni-based Superalloy N5 and Its Nanocrystalline Coating at 900 ℃ in O2 and O2+20%H2O Environment[J]. 中国腐蚀与防护学报, 2023, 43(1): 55-61.
[15] LI Ling, DU Xiran, QU Pinquan, LI Jiancheng, WANG Jinlong, GU Yan, ZHANG Jia, CHEN Minghui, WANG Fuhui. Effect of Vacuum Heat Treatment on Oxidation Behavior of Arc Ion Plated NiCoCrAlY Coatings[J]. 中国腐蚀与防护学报, 2022, 42(2): 243-248.
No Suggested Reading articles found!