|
|
Manufacturing and Research Progress in Metallic Bond Coats for Thermal Barrier Coatings |
ZHANG Han, LIU Xuanzhen, HUANG Aihui, ZHAO Xiaofeng, LU Jie( ) |
Shanghai Key Laboratory of Advanced High-Temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China |
|
Cite this article:
ZHANG Han, LIU Xuanzhen, HUANG Aihui, ZHAO Xiaofeng, LU Jie. Manufacturing and Research Progress in Metallic Bond Coats for Thermal Barrier Coatings. Journal of Chinese Society for Corrosion and protection, 2025, 45(1): 20-32.
|
Abstract Thermal barrier coatings (TBCs) are widely used to protect the key components of areo- and land-based turbine engines, which is a key technology and an important means to improve engines efficiency and extend service life. The bond coat, as an important component of the TBC system, can relieve the thermal mismatch between the ceramic topcoat and the superalloy substrate, and improve the thermal stability of the thermal barrier coating system. On the other hand, it protects the superalloy substrate from oxidation and corrosion at high temperatures by forming a dense and continuous of Al2O3 layer. Therefore, the service life of the TBCs is predominantly dependent on the performance of bond coat. In this paper, the research progress on the conventional bond coat materials and preparation methods, as well as their advantages and disadvantages are introduced. The newly high-entropy alloy bond coat system is introduced with emphasis on the research progress of composition design, structure and oxidation resistance, as well as its deficiencies. Finally, the research trend of high entropy alloy bond coat materials is prospected.
|
Received: 25 August 2024
32134.14.1005.4537.2024.267
|
|
Fund: National Natural Science Foundation of China(52201082; 51971139) |
Corresponding Authors:
LU Jie, E-mail: lu-jie@sjtu.edu.cn
|
1 |
Padture N P, Gell M, Jordan E H. Thermal barrier coatings for gas-turbine engine applications [J]. Science, 2002, 296: 280
pmid: 11951028
|
2 |
Clarke D R, Phillpot S R. Thermal barrier coating materials [J]. Mater. Today, 2005, 8: 22
|
3 |
Guo H B, Gong S K, Xu H B. Progress in thermal barrier coatings for advanced aeroengines [J]. Mater. China, 2009, 28(9-10): 18
|
|
郭洪波, 宫声凯, 徐惠彬. 先进航空发动机热障涂层技术研究进展 [J]. 中国材料进展, 2009, 28(9-10): 18
|
4 |
Bao Z B, Jiang C Y, Zhu S L, et al. High temperature protective bond coats: development and effect of reactive element [J]. J. Aeronaut. Mater., 2018, 38(2): 21
|
|
鲍泽斌, 蒋成洋, 朱圣龙 等. 高温防护金属涂层的发展及活性元素效应 [J]. 航空材料学报, 2018, 38(2): 21
doi: 10.11868/j.issn.1005-5053.2018.001004
|
5 |
Zheng L, Guo H B, Guo L, et al. New generation thermal barrier coatings for ultrahigh temperature applications [J]. J. Aeronaut. Mater., 2012, 32(6): 14
|
|
郑 蕾, 郭洪波, 郭 磊 等. 新一代超高温热障涂层研究 [J]. 航空材料学报, 2012, 32(6): 14
|
6 |
Guo H B, Gong S K, Xu H B. Research progress on new high/ultra-high temperature thermal barrier coatings and processing technologies [J]. Acta Aeronaut. Astronaut. Sin., 2014, 35: 2722
|
|
郭洪波, 宫声凯, 徐惠彬. 新型高温/超高温热障涂层及制备技术研究进展 [J]. 航空学报, 2014, 35: 2722
doi: 10.7527/S1000-6893.2014.0161
|
7 |
Tolpygo V K, Clarke D R. On the rumpling mechanism in nickel-aluminide coatings: part II: characterization of surface undulations and bond coat swelling [J]. Acta Mater., 2004, 52: 5129
|
8 |
Wu R T, Wang X, Atkinson A. On the interfacial degradation mechanisms of thermal barrier coating systems: effects of bond coat composition [J]. Acta Mater., 2010, 58: 5578
|
9 |
Yang Y F, Jiang C Y, Yao H R, et al. Cyclic oxidation and rumpling behaviour of single phase β-(Ni, Pt)Al coatings with different thickness of initial Pt plating [J]. Corros. Sci., 2016, 111: 162
|
10 |
Mumm D R, Evans A G. On the role of imperfections in the failure of a thermal barrier coating made by electron beam deposition [J]. Acta Mater., 2000, 48: 1815
|
11 |
Cao F, Tryon B, Torbet C J, et al. Microstructural evolution and failure characteristics of a NiCoCrAlY bond coat in “hot spot” cyclic oxidation [J]. Acta Mater., 2009, 57: 3885
|
12 |
Wang S X, Li J C, Wang Q T, et al. Application and development of platinum modified aluminide coating [J]. Therm. Spray Technol., 2020, 12(3): 18
|
|
王世兴, 李建超, 王秋童 等. 铂改性铝化物涂层的应用与发展 [J]. 热喷涂技术, 2020, 12(3): 18
|
13 |
Nicholls J E. Hot-dipped aluminium coatings [J]. Anti-Corros. Methods Mater., 1964, 11: 16
|
14 |
Nicholls J R. Advances in coating design for high-performance gas turbines [J]. MRS Bull., 2003, 28: 659
|
15 |
Yu C T, Yang Y F, Bao Z B, et al. Research progress in preparation and development of excellent bond coats for advanced thermal barrier coatings [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 395
|
|
余春堂, 阳颖飞, 鲍泽斌 等. 先进高温热障涂层用高性能粘接层制备及研究进展 [J]. 中国腐蚀与防护学报, 2019, 39: 395
doi: 10.11902/1005.4537.2019.154
|
16 |
Das D K. Microstructure and high temperature oxidation behavior of Pt-modified aluminide bond coats on Ni-base superalloys [J]. Prog. Mater. Sci., 2013, 58: 151
|
17 |
Zhang Y, Haynes J A, Wright G, et al. Effects of Pt incorporation on the isothermal oxidation behavior of chemical vapor deposition aluminide coatings [J]. Metall. Mater. Trans., 2001, 32A: 1727
|
18 |
Pint B A. The role of chemical composition on the oxidation performance of aluminide coatings [J]. Surf. Coat. Technol., 2004, 188-189: 71
|
19 |
Gleeson B, Mu N, Hayashi S. Compositional factors affecting the establishment and maintenance of Al2O3 scales on Ni-Al-Pt systems [J]. J. Mater. Sci., 2009, 44: 1704
|
20 |
Shirvani K, Rashidghamat A. Evolution of oxide scale on aluminide and Pt-aluminide coatings exposed to type I (870 oC) hot corrosion [J]. Oxid. Met., 2016, 85: 75
|
21 |
Tawancy H M, Abbas N M, Rhys-Jones T N. Role of platinum in aluminide coatings [J]. Surf. Coat. Technol., 1991, 49: 1
|
22 |
Hayashi S, Ford S I, Young D J, et al. α-NiPt(Al) and phase equilibria in the Ni-Al-Pt system at 1150 oC [J]. Acta Mater., 2005, 53: 3319
|
23 |
Tolpygo V K, Murphy K S, Clarke D R. Effect of Hf, Y and C in the underlying superalloy on the rumpling of diffusion aluminide coatings [J]. Acta Mater., 2008, 56: 489
|
24 |
Tolpygo V K, Clarke D R. Surface rumpling of a (Ni, Pt)Al bond coat induced by cyclic oxidation [J]. Acta Mater., 2000, 48: 3283
|
25 |
Sato A, Harada H, Kawagishi K. Development of a new bond coat “EQ coating” system [J]. Metall. Mater. Trans., 2006, 37A: 789
|
26 |
Goward G W, Boone D H. Mechanisms of formation of diffusion aluminide coatings on nickel-base superalloys [J]. Oxid. Met., 1971, 3: 475
|
27 |
Zhang Y, Pint B A, Haynes J A, et al. A platinum-enriched γ + γ′ two-phase bond coat on Ni-based superalloys [J]. Surf. Coat. Tech‐nol., 2005, 200: 1259
|
28 |
Hemker K J, Nix W D. High-temperature creep of the intermetallic alloy Ni3Al [J]. Metall. Trans., 1993, 24A: 335
|
29 |
Zhao X, Shapiro I P, Xiao P. Spinel formation in thermal barrier systems with a Pt-enriched γ-Ni + γ′-Ni3Al bond coat [J]. Surf. Coat. Technol., 2008, 202: 2905
|
30 |
Pint B A. Experimental observations in support of the dynamic segregation theory to explain the reactive-element effect [J]. Oxid. Met., 1996, 45: 1
|
31 |
Pint B A, Alexander K B. Grain boundary segregation of cation dopants in α‐Al2O3 scales [J]. J. Electrochem. Soc., 2019, 145: 1819
|
32 |
Zhang T, Guo H B, Gong S K, et al. Effects of Dy on the adherence of Al2O3/NiAl interface: a combined first-principles and experimental studies [J]. Corros. Sci., 2013, 66: 59
|
33 |
Li D Q, Guo H B, Wang D, et al. Cyclic oxidation of β-NiAl with various reactive element dopants at 1200 oC [J]. Corros. Sci., 2013, 66: 125
|
34 |
Zhao C S, Zhou Y H, Zou Z H, et al. Effect of alloyed Lu, Hf and Cr on the oxidation and spallation behavior of NiAl [J]. Corros. Sci., 2017, 126: 334
|
35 |
Zhao C S, Luo L R, Lu J, et al. Investigation on the performance of air plasma sprayed thermal barrier coating with Lu/Hf-doped NiAl bond coat [J]. Surf. Coat. Technol., 2019, 360: 140
|
36 |
Guo H B, Li D Q, Zheng L, et al. Effect of co-doping of two reactive elements on alumina scale growth of β-NiAl at 1200 oC [J]. Corros. Sci., 2014, 88: 197
|
37 |
He J, Peng H, Gong S K, et al. Synergistic effect of reactive element co-doping in two-phase (γ′ + β)Ni-Al alloys [J]. Corros. Sci., 2017, 120: 130
|
38 |
Lan H, Zhang W G, Yang Z G. Investigation of Pt-Dy co-doping effects on isothermal oxidation behavior of (Co, Ni)-based alloy [J]. J. Rare Earths, 2012, 30: 928
|
39 |
He J, Guo H B, Zhang Y L, et al. Improved hot-corrosion resistance of Si/Cr co-doped NiAlDy alloy in simulative sea-based engine environment [J]. Corros. Sci., 2014, 85: 232
|
40 |
Meng X X, Pei Y W, Shao W, et al. Cyclic oxidation behaviour of Co/Si co-doped β-NiAl coating on nickel based superalloys [J]. Corros. Sci., 2018, 133: 112
|
41 |
Chen W J, Song P, Gao D, et al. Metallic bond coats for thermally sprayed thermal barrier coatings applied to aero-engines and industrial gas turbines: review and prospect [J]. J. Aeronaut. Mater., 2022, 42(1): 15
|
|
陈卫杰, 宋 鹏, 高 栋 等. 航空发动机和工业燃气轮机热喷涂热障涂层用金属黏结层: 回顾与展望 [J]. 航空材料学报, 2022, 42 (1): 15
doi: 10.11868/j.issn.1005-5053.2021.000217
|
42 |
Evans A G, Mumm D R, Hutchinson J W, et al. Mechanisms controlling the durability of thermal barrier coatings [J]. Prog. Mater. Sci., 2001, 46: 505
|
43 |
Liu X Z, Chen Y, Lu J, et al. A comparative study on the oxidation behavior of Y-, Hf- and YHf-doped NiCoCrAl alloys: effect of reactive elements [J]. Corros. Sci., 2023, 218: 111160
|
44 |
Sloof W G, Nijdam T J. On the high-temperature oxidation of MCrAlY coatings [J]. Int. J. Mater. Res., 2009, 100: 1318
|
45 |
Brady M P, Wright I G, Gleeson B. Alloy design strategies for promoting protective oxide-scale formation [J]. JOM, 2000, 52: 16
|
46 |
Achar D R G, Munoz-Arroyo R, Singheiser L, et al. Modelling of phase equilibria in MCrAlY coating systems [J]. Surf. Coat. Technol., 2004, 187: 272
|
47 |
Raffaitin A, Crabos F, Andrieu E, et al. Advanced burner-rig test for oxidation-corrosion resistance evaluation of MCrAlY/superalloys systems [J]. Surf. Coat. Technol., 2006, 201: 3829
|
48 |
Czech N, Schmitz F, Stamm W. Microstructural analysis of the role of rhenium in advanced MCrAlY coatings [J]. Surf. Coat. Technol., 1995, 76-77: 28
|
49 |
Sundman B, Jansson B, Andersson J-O. The Thermo-Calc databank system [J]. Calphad, 1985, 9: 153
|
50 |
Dupin N, Sundman B. A thermodynamic database for Ni‐base superalloys [J]. Scand. J. Metall., 2001, 30: 184
|
51 |
Zhao C S. Study on preparation and oxidation resistance of reactive element doped NiAl bond coat [D]. Shanghai: Shanghai Jiao Tong University, 2019
|
|
赵春山. 活性元素掺杂 NiAl 粘结层制备及抗氧化性能研究 [D]. 上海: 上海交通大学, 2019
|
52 |
Lu J, Zhang H, Chen Y, et al. Effect of microstructure of a NiCoCrAlY coating fabricated by high-velocity air fuel on the isothermal oxidation [J]. Corros. Sci., 2019, 159: 108126
|
53 |
Chen Y, Zhao X F, Xiao P. Effect of microstructure on early oxidation of MCrAlY coatings [J]. Acta Mater., 2018, 159: 150
|
54 |
Meng G H, Liu H, Liu M J, et al. Large-grain α-Al2O3 enabling ultra-high oxidation-resistant MCrAlY bond coats by surface pre-agglomeration treatment [J]. Corros. Sci., 2020, 163: 108275
|
55 |
Yang Y F, Yao H R, Bao Z B, et al. Modification of NiCoCrAlY with Pt: part I. Effect of Pt depositing location and cyclic oxidation performance [J]. J. Mater. Sci. Technol., 2019, 35: 341
doi: 10.1016/j.jmst.2018.09.039
|
56 |
Li Y Y, Zhang C, Ji H Z, et al. Pt-modification on the thermal cycling behavior of NiCoCrAlYTa coating: a case study [J]. Corros. Sci., 2024, 230: 111934
|
57 |
Zhen H J, Peng X. A new approach to manufacture oxidation-resistant NiCrAl overlay coatings by electrodeposition [J]. Corros. Sci., 2019, 150: 121
|
58 |
Tian L X, Peng X. Research progress of a novel nano-composited MCrAl(Y) coating prepared by electrodepostion [J]. Surf. Technol., 2022, 51(9): 74
|
|
田礼熙, 彭 晓. 电沉积新型纳米复合MCrAl(Y)涂层的研究进展 [J]. 表面技术, 2022, 51(9): 74
|
59 |
Jiang S M, Xu C Z, Li H Q, et al. High temperature corrosion behaviour of a gradient NiCoCrAlYSi coating I: microstructure evolution [J]. Corros. Sci., 2010, 52: 1746
|
60 |
Yu D Q, Lu X Y, Ma J, et al. Study of oxidation behavior of the gradient NiCrAlY coating at 1000 and 1100 oC [J]. Acta Metall. Sin., 2012, 48: 759
|
|
于大千, 卢旭阳, 马 军 等. 梯度NiCrAlY涂层的1000和1100 ℃氧化行为研究 [J]. 金属学报, 2012, 48: 759
doi: 10.3724/SP.J.1037.2012.00024
|
61 |
Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
|
62 |
Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, 375A-377A: 213
|
63 |
Miracle D B, Tsai M H, Senkov O N, et al. Refractory high entropy superalloys (RSAs) [J]. Scr. Mater., 2020, 187: 445
|
64 |
Hsu W L, Tsai C W, Yeh A C, et al. Clarifying the four core effects of high-entropy materials [J]. Nat. Rev. Chem., 2024, 8: 471
|
65 |
Li Y, Shi P J, Wang M Y, et al. Unveiling microstructural origins of the balanced strength-ductility combination in eutectic high-entropy alloys at cryogenic temperatures [J]. Mater. Res. Lett., 2022, 10: 602
|
66 |
Yan X H, Zou Y, Zhang Y. Properties and processing technologies of high-entropy alloys [J]. Mater. Futures, 2022, 1: 022002
|
67 |
Lu J, Chen Y, Zhang H, et al. Effect of Al content on the oxidation behavior of Y/Hf-doped AlCoCrFeNi high-entropy alloy [J]. Corros. Sci., 2020, 170: 108691
|
68 |
Lu J, Ren G L, Chen Y, et al. Unraveling the oxidation mechanism of an AlCoCrFeNi high-entropy alloy at 1100 oC [J]. Corros. Sci., 2022, 209: 110736
|
69 |
Lu J, Zhang H, Li L, et al. Y-Hf co-doped Al1.1CoCr0.8FeNi highentropy alloy with excellent oxidation resistance and nanostructure stability at 1200 oC [J]. Scr. Mater., 2021, 203: 114105
|
70 |
Huang A H, Li L, Liu X Z, et al. Phase transformation-induced TGO rumpling failure of an AlCoCrFeNi high-entropy alloy after isothermal oxidation at 1200 oC [J]. Scr. Mater., 2024, 239: 115817
|
71 |
Lu J, Chen Y, Zhang H, et al. Y/Hf-doped Al0.7CoCrFeNi high-entropy alloy with ultra oxidation and spallation resistance at 1200 oC [J]. Corros. Sci., 2020, 174: 108803
|
72 |
Lu Y P, Dong Y, Guo S, et al. A promising new class of high-temperature alloys: eutectic high-entropy alloys [J]. Sci. Rep., 2014, 4: 6200
doi: 10.1038/srep06200
pmid: 25160691
|
73 |
Huang L F, Sun Y N, Chen N, et al. Simultaneously enhanced strength-ductility of AlCoCrFeNi2.1 eutectic high-entropy alloy via additive manufacturing [J]. Mater. Sci. Eng., 2022, 830A: 142327
|
74 |
Chanda B, Potnis G, Jana P P, et al. A review on nano-/ultrafine advanced eutectic alloys [J]. J. Alloy. Compd., 2020, 827: 154226
|
75 |
Tiwary C S, Pandey P, Sarkar S, et al. Five decades of research on the development of eutectic as engineering materials [J]. Prog. Mater. Sci., 2022, 123: 100793
|
76 |
Lu J, Zhang H, Li L, et al. Y-Hf co-doped AlCoCrFeNi2.1 eutectic high-entropy alloy with excellent oxidation and spallation resistance under thermal cycling conditions at 1100 oC and 1200 oC [J]. Corros. Sci., 2021, 187: 109515
|
77 |
Lu J, Zhang H, Chen Y, et al. Y-doped AlCoCrFeNi2.1 eutectic highentropy alloy with excellent oxidation resistance and structure stability at 1000 oC and 1100 oC [J]. Corros. Sci., 2021, 180: 109191
|
78 |
Lu J, Zhang H, Ren G L, et al. A comparative study on the oxida tion behavior and failure mechanisms of conventional NiCoCrAl alloy and in-situ composite AlCoCrFeNi2.1 eutectic high-entropy alloy at 1300 oC [J]. Composites, 2024, 269B: 111097
|
79 |
Lu J, Chen Y, Li L, et al. An in-situ oxide-dispersion-strengthened AlCoCrFeNiY high-entropy alloy composite coating prepared by AC-HVAF with superior oxidation and spallation resistance [J]. Composites, 2023, 265B: 110933
|
80 |
Lu J, Chen Y, Sun Z H, et al. Air plasma sprayed high-entropy AlCoCrFeNiY coating with excellent oxidation and spallation resistance under cyclic oxidation at 1050-1150 oC [J]. Corros. Sci., 2022, 198: 110151
|
81 |
Ma T, Huang T H, Hua C, et al. Study on gradient structure and interface mechanical properties of n-8YSZ/AlCoCrFeNi high-entropy coatings [J]. Ceram. Int., 2023, 49: 10305
|
82 |
Wang L Q, Zhang F Y, Yan S, et al. Microstructure evolution and mechanical properties of atmosphere plasma sprayed AlCoCrFeNi high-entropy alloy coatings under post-annealing [J]. J. Alloy. Compd., 2021, 872: 159607
|
83 |
Meghwal A, Singh S, Anupam A, et al. Nano- and micro-mechanical properties and corrosion performance of a HVOF sprayed AlCoCrFeNi high-entropy alloy coating [J]. J. Alloy. Compd., 2022, 912: 165000
|
84 |
Zhang X, Zhang H F, Zhang N N, et al. Oxidation behavior of AlCoCrFeNi bond coating in the YSZ-TBCs produced by APS and PS-PVD method [J]. Ceram. Int., 2024, 50: 17190
|
85 |
Ossiansson M, Gupta M, Löbel M, et al. Assessment of CrFeCoNi and AlCrFeCoNi high-entropy alloys as bond coats for thermal barrier coatings [J]. J. Therm. Spray Technol., 2022, 31: 1404
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|