Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2026, Vol. 46 Issue (1): 103-114    DOI: 10.11902/1005.4537.2025.257
Current Issue | Archive | Adv Search |
Passivation and Pitting Corrosion Behavior of Laser Directed Energy Deposited 17-4PH Stainless Steel
GU Qingyu1, SONG Yanfei1, ZHANG Liangliang2, WANG Nan1, LEI Xiaowei1()
1.School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, China
2.School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
Cite this article: 

GU Qingyu, SONG Yanfei, ZHANG Liangliang, WANG Nan, LEI Xiaowei. Passivation and Pitting Corrosion Behavior of Laser Directed Energy Deposited 17-4PH Stainless Steel. Journal of Chinese Society for Corrosion and protection, 2026, 46(1): 103-114.

Download:  HTML  PDF(18249KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In comparison with those prepared by ordinary hot extrusion method, the 17-4PH stainless steel fabricated by laser directed energy deposition (DED) has finer grains and retained austenite. However, current research mainly focuses on its mechanical properties, and there is still a lack of studies on its passivation and pitting corrosion behavior. In this work, the microstructural characteristics, passivation, and pitting behavior in 3.5%NaCl solution of 17-4PH stainless steel prepared with three different DED heat inputs were assessed by taking the hot extruded 17-4PH steel as comparison, via potentiodynamic polarization curves, electrochemical impedance spectroscopy, potentiostatic polarization, critical pitting temperature, and Mott-Schottky curves, as well as XRD, SEM, EBSD, and XPS. The results show that the DED steel prepared with a heat input of 1440 J·cm-1 contains 6.9% retained austenite (EBSD volume fraction). Compared with the hot extruded steel the lath martensite size of DED steel is reduced by 67.5%, the pitting potential is increased by 0.131 V (vs. Ag/AgCl), the resistance to metastable pitting is higher, the critical pitting temperature is elevated from 47.9 oC to 67.2 oC, besides, the point defect density is lower and the Cr oxide content is higher for the passivation film. These findings indicate that the DED sample has stronger passivation ability and superior pitting corrosion resistance.

Key words:  17-4PH stainless steel      laser directed energy deposition (DED)      retained austenite      passive film      pitting corrosion     
Received:  08 August 2025      32134.14.1005.4537.2025.257
ZTFLH:  TG178  
Fund: National Natural Science Foundation of China(52571101);National Natural Science Foundation of China(52404351);National Science and Technology Major Project(2025ZD1402005)

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2025.257     OR     https://www.jcscp.org/EN/Y2026/V46/I1/103

SampleLaser power / WScanning speed / mm·min-1Layer thickness / mmPowder feeding rate / g·min-1Heat input / J·cm-1
1#12004500.910.61600
2#12005000.910.61440
3#12005500.910.61309
Table 1  Preparation parameters of coaxial powder feeding DED 17-4PH stainless steel samples
Fig.1  XRD spectra of 17-4PH stainless steel DED and extruded samples
Fig.2  SEM images of 17-4PH stainless steel DED and extruded samples: (a, b) 2#DED; (c, d) extruded
Fig.3  Comparison of the numbers and sizes of carbides in DED and extruded samples: (a) 2#DED; (b) extruded; (c) comparison of carbides features
Fig.4  EBSD characterization results of 17-4PH stainless steel DED and extruded samples: (a) IPF of 2#DED sample, (b) IPF of extruded sample, (c) phase distribution map of 2#DED sample, (d) phase distribution map of extruded sample
Fig.5  Potentiodynamic polarization curves of 17-4PH stainless steel in 3.5%NaCl solution
SampleEcorr / V (vs. Ag/AgCl)Icorr / A·cm-2Ep / V (vs. Ag/AgCl)ΔE / V (vs. Ag/AgCl)
1#-0.1781.67 × 10-70.1990.377
2#-0.1988.17 × 10-80.2180.416
3#-0.1881.42 × 10-70.1800.368
Extruded-0.2211.20 × 10-70.0870.308
Table 2  Corrosion parameters obtained by Tafel fitting of potentiodynamic polarization curves
Fig.6  Metastable pitting behavior of 17-4PH stainless steel in 3.5%NaCl solution: (a) potentiostatic polarization curves at -0.05 V (vs. Ag/AgCl), (b) representative metastable pitting event, (c) cumulative probability distribution vsIpit, (d) cumulative probability distribution vstlife
Fig.7  Critical pitting temperature measuring curves of 17-4PH stainless steel in 3.5%NaCl solution
Fig.8  Pitting morphologies of 17-4PH stainless steel after immersion corrosion in 6%FeCl3 solution for 8 h: (a, b) extruded sample, (c, d) 2#DED sample
Fig.9  SEM morphologies and EDS mapping of pitting initiation sites of 17-4PH stainless steel: (a) extruded sample, (b) 2#DED sample
Fig.10  Nyquist plot (a) and Bode plots (b, c) of 17-4PH stainless steel in 3.5%NaCl solution and equivalent electriccircuit (d)
SampleRs / Ω·cm2Cdl / Ω-1·cm-2·s nnRp / Ω·cm2
1#9.444.98 × 10-50.901.16 × 105
2#8.395.01 × 10-50.821.95 × 105
3#8.587.75 × 10-50.851.30 × 105
Extruded14.721.15 × 10-40.890.61 × 105
Table 3  Fitting results for EIS plots of 17-4PH stainless steel
Fig.11  Mott-Schottky curve of 17-4PH stainless steel in 3.5%NaCl solution
SampleND / cm-3EFB / V (vs. Ag/AgCl)
1#2.09 × 1021-0.45
2#4.53 × 1021-0.44
3#4.15 × 1021-0.51
Extruded4.95 × 1021-0.56
Table 4  Donor density and flat-band potential of passive film obtained via fitting of Mott-Schottky curve
Fig.12  XPS spectrum of the passive film on 17-4PH stainless steel's surface: (a, c) Cr 2p; (b, d) Fe 2p
[1] Galindo-Nava E I, Rainforth W M, Rivera-Díaz-del-Castillo P E J. Predicting microstructure and strength of maraging steels: Elemental optimisation [J]. Acta Mater., 2016, 117: 270
doi: 10.1016/j.actamat.2016.07.020
[2] Wang J, Zou H, Li C, et al. The effect of microstructural evolution on hardening behavior of type 17-4PH stainless steel in long-term aging at 350 oC [J]. Mater. Charact., 2006, 57: 274
doi: 10.1016/j.matchar.2006.02.004
[3] Nakhaie D. Investigating the impact of pre-deformation on age hardening and pitting corrosion resistance of 17-4PH stainless steel [J]. Metall. Mater. Trans., 2023, 54A: 3653
[4] LeBrun T, Nakamoto T, Horikawa K, et al. Effect of retained austenite on subsequent thermal processing and resultant mechanical properties of selective laser melted 17-4PH stainless steel [J]. Mater. Des., 2015, 81: 44
doi: 10.1016/j.matdes.2015.05.026
[5] Stoudt M R, Ricker R E, Lass E A, et al. Influence of postbuild microstructure on the electrochemical behavior of additively manufactured 17-4 PH stainless steel [J]. JOM, 2017, 69: 506
doi: 10.1007/s11837-016-2237-y pmid: 28757787
[6] Barroux A, Ducommun N, Nivet E, et al. Pitting corrosion of 17-4PH stainless steel manufactured by laser beam melting [J]. Corros. Sci., 2020, 169: 108594
doi: 10.1016/j.corsci.2020.108594
[7] Wang T, Wang Z Y, Wang R, et al. Effect of solution aging treatment on corrosion resistance and erosion resistance of laser metal deposition 17-4PHss [J]. Eng. Failure Anal., 2025, 169: 109167
doi: 10.1016/j.engfailanal.2024.109167
[8] Garcia-Cabezon C, Castro-Sastre M A, Fernandez-Abia A I, et al. Microstructure-hardness-corrosion performance of 17-4 precipitation hardening stainless steels processed by selective laser melting in comparison with commercial alloy [J]. Met. Mater. Int., 2022, 28: 2652
doi: 10.1007/s12540-021-01155-8
[9] Standard test methods for electrochemical critical pitting temperature testing of stainless steels [S]. West Conshohocken, Pennsylvania: ASTM International, 2013
[10] Deng B, Jiang Y M, Hao R W, et al. Synergetic effect of fluoride and chloride on the critical pitting temperature of 316 stainless steel [J]. J. Chin. Soc. Corros. Prot., 2008, 28: 30
邓 博, 蒋益明, 郝允卫 等. F-和Cl-对316不锈钢临界点蚀温度的协同作用 [J]. 中国腐蚀与防护学报, 2008, 28: 30
[11] Yang Z Y, Ji C, Guo L Y, et al. Initial corrosion behavior of several pure irons and steels in 3.5%NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2025, 45: 469
杨震宇, 基 超, 郭丽雅 等. 6种典型商用纯铁和钢材在3.5%NaCl溶液中的初期腐蚀行为 [J]. 中国腐蚀与防护学报, 2025, 45: 469
doi: 10.11902/1005.4537.2024.338
[12] Hou Y, Zhao J, Cao T S, et al. Improvement on the pitting corrosion resistance of 304 stainless steel via duplex passivation treatment [J]. Mater. Corros., 2019, 70: 1764
[13] Goodlet G, Faty S, Cardoso S, et al. The electronic properties of sputtered chromium and iron oxide films [J]. Corros. Sci., 2004, 46: 1479
doi: 10.1016/j.corsci.2003.09.022
[14] Li Z, Zhang Y W, Meng G Z, et al. Electrochemical corrosion behavior of 17-4PH stainless steel with laser surface melting treatment [J]. J. Chin. Soc. Corros. Prot., 2012, 32: 210
李 众, 张峻巍, 孟国哲 等. 激光表面处理17-4PH不锈钢的电化学腐蚀行为 [J]. 中国腐蚀与防护学报, 2012, 32: 210
[15] Olugbade T O, Oladapo B I, Omiyale B O. Electrochemical and microstructural characterization of a precipitation hardened 17-4 steel in different environments [J]. Colloids Surf., 2025, 706A: 135795
[16] Wang Z, Feng Z, Zhang L. Effect of high temperature on the corrosion behavior and passive film composition of 316L stainless steel in high H2S-containing environments [J]. Corros. Sci., 2020, 174: 108844
doi: 10.1016/j.corsci.2020.108844
[17] Carmezim M J, Simões A M, Montemor M F, et al. Capacitance behaviour of passive films on ferritic and austenitic stainless steel [J]. Corros. Sci., 2005, 47: 581
doi: 10.1016/j.corsci.2004.07.002
[18] Barroux A, Duguet T, Ducommun N, et al. Combined XPS/TEM study of the chemical composition and structure of the passive film formed on additive manufactured 17-4PH stainless steel [J]. Surf. Interfaces, 2021, 22: 100874
[19] Biesinger M C, Payne B P, Grosvenor A P, et al. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni [J]. Appl. Surf. Sci., 2011, 257: 2717
doi: 10.1016/j.apsusc.2010.10.051
[20] Süzer S, Kadirgan F, Söhmen H M. XPS characterization of Co and Cr pigmented copper solar absorbers [J]. Sol. Energy Mater. Sol. Cells, 1999, 56: 183
doi: 10.1016/S0927-0248(98)00159-7
[21] Lei X W, Feng Y R, Zhang J X, et al. Impact of reversed austenite on the pitting corrosion behavior of super 13Cr martensitic stainless steel [J]. Electrochim. Acta, 2016, 191: 640
doi: 10.1016/j.electacta.2016.01.094
[22] Ping S B, Xie F, Wang R K, et al. Diffusion kinetics of chromium in a novel Super304H stainless steel [J]. High Temp. Mater. Processes, 2017, 36: 175
doi: 10.1515/htmp-2015-0227
[23] Wang L, Dong C F, Man C, et al. Effect of microstructure on corrosion behavior of high strength martensite steel: A literature review [J]. Int. J. Miner. Metall. Mater., 2021, 28: 754
doi: 10.1007/s12613-020-2242-6
[24] Tavares S S M, da Silva F J, Scandian C, et al. Microstructure and intergranular corrosion resistance of UNS S17400 (17-4PH) stainless steel [J]. Corros. Sci., 2010, 52: 3835
doi: 10.1016/j.corsci.2010.07.016
[25] Colaço R, Vilar R. Stabilisation of retained austenite in laser surface melted tool steels [J]. Mater. Sci. Eng., 2004, 385A: 123
[26] Ralston K D, Birbilis N, Davies C H J. Revealing the relationship between grain size and corrosion rate of metals [J]. Scr. Mater., 2010, 63: 1201
doi: 10.1016/j.scriptamat.2010.08.035
[27] Li Y, Zhang B C, Qu X H. Research progress on the influence of microstructure characteristics of metal additive manufacturing on its corrosion resistance [J]. Chin. J. Eng., 2022, 44: 573
李 莹, 张百成, 曲选辉. 金属增材制造的微观组织特征对其抗腐蚀行为影响的研究进展 [J]. 工程科学学报, 2022, 44: 573
[1] YI Junda, LENG Ao, GONG Delun, WEI Boxin. Microstructureand Properties of Low Modulus Corrosion-resistant Metastable β-Ti Alloy Prepared by Electron Beam Melting[J]. 中国腐蚀与防护学报, 2026, 46(1): 49-59.
[2] LI Ping, SHI Huijie, PEI Jibin, WANG Zijian, CAO Tieshan, CHENG Congqian, ZHAO Jie. Impact of Nanosecond Pulsed Laser Irradiation on Electrochemical Corrosion Behavior of 17-4PH Stainless Steel[J]. 中国腐蚀与防护学报, 2025, 45(5): 1417-1424.
[3] ZHANG Yani, WANG Simin, FAN Bing. Corrosion and Passivation Behavior of TC4 Ti-alloy in a Simulated Downhole Liquid in High-temperature and High-pressed O2 + CO2 Environment[J]. 中国腐蚀与防护学报, 2024, 44(6): 1518-1528.
[4] MA Heng, TIAN Huiyun, LIU Yuxi, WANG Yuexiang, HE Kang, CUI Zhongyu, CUI Hongzhi. Corrosion Behavior of S420 Steel in Different Marine Zones[J]. 中国腐蚀与防护学报, 2024, 44(3): 635-644.
[5] XING Shaohua, PENG Wenshan, QIAN Yao, LI Xiangbo, MA Li, ZHANG Dalei. Effect of Seawater Flow Velocity on Pitting Corrosion of 2205 Stainless Steel with Different Surface Treatments[J]. 中国腐蚀与防护学报, 2024, 44(3): 658-668.
[6] ZHANG Chenglong, ZHANG Bin, ZHU Min, YUAN Yongfeng, GUO Shaoyi, YIN Simin. Corrosion Behavior of Medium Entropy CoCrNi-alloy in NH4Cl Solutions[J]. 中国腐蚀与防护学报, 2024, 44(3): 725-734.
[7] XIONG Yiming, MEI Wan, WANG Zehua, YU Rui, XU Shiyao, WU Lei, ZHANG Xin. Corrosion Behavior of 5083 Al-alloy under Magnetic Field[J]. 中国腐蚀与防护学报, 2024, 44(1): 229-236.
[8] REN Wankai, LIAN Zhouyang, ZHOU Kang, LUO Zhengwei, WEI Wuji, ZHANG Xueying. Influence of Ammonia Desulfurization Liquid Components on Localized Corrosion Development Stage of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(6): 1392-1398.
[9] LIU Wei. Asymmetric Surface Configuration for Electrochemical Noise Measurement on Stainless Steel[J]. 中国腐蚀与防护学报, 2023, 43(5): 1151-1158.
[10] LI Wenju, ZHANG Huixia, ZHANG Hongquan, HAO Fuyao, TONG Hongtao. Effect of Temperature on Stress Corrosion Behavior of Ti-alloy Ti80 in Sea Water[J]. 中国腐蚀与防护学报, 2023, 43(1): 111-118.
[11] ZHENG Zhong, ZHOU Yuanxiang, LI Yongyin. AC Corrosion Behavior of Several Metallic Materials as Candidate for Boiler Electrode[J]. 中国腐蚀与防护学报, 2023, 43(1): 202-208.
[12] BAO Yefeng, WU Zhuyu, CHEN Zhe, GUO Linpo, WANG Zirui, CAO Chong, SONG Qining. Effect of Sensitization Treatment on Electrochemical Corrosion and Pitting Corrosion of 00Cr21NiMn5Mo2N Stainless Steel[J]. 中国腐蚀与防护学报, 2022, 42(6): 1027-1033.
[13] ZHANG Yuan, ZHANG Xian, CHEN Siyu, LI Teng, LIU Jing, WU Kaiming. Effect of Phosphoric Acid Concentration on Corrosion Resistance and Passivation Film Properties of 316L Stainless Steel[J]. 中国腐蚀与防护学报, 2022, 42(5): 819-825.
[14] HUANG Lianpeng, ZHANG Xin, XIONG Yiming, TAO Jiahao, WANG Zehua, ZHOU Zehua. Corrosion Behavior of Al-3.0Mg-xRE/Fe Alloys Under Magnetic Field of Different Intensities[J]. 中国腐蚀与防护学报, 2022, 42(5): 833-838.
[15] WAN Ye, SONG Fangling, LI Lijun. Corrosion Characteristics of Carbon Steel in Simulated Marine Atmospheres[J]. 中国腐蚀与防护学报, 2022, 42(5): 851-855.
No Suggested Reading articles found!