Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (5): 1361-1370    DOI: 10.11902/1005.4537.2024.400
Current Issue | Archive | Adv Search |
Hot Corrosion Behavior of Brazed Joints of Single Crystal Ni-based DD10 Alloy Beneath Na2SO4 Deposit in Air at 850 and 900 ℃
ZHAO Xinyu1,2, LIU Enze1(), ZHANG Gong1, ZHAO Yuan3, NING Likui1, XIN Xin1, JIA Dan1, LIU Weihua1, TAN Zheng1,2
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3 China Shipbuilding Equipment & Materials Northeast Corporation Limited, Shenyang 110011, China
Cite this article: 

ZHAO Xinyu, LIU Enze, ZHANG Gong, ZHAO Yuan, NING Likui, XIN Xin, JIA Dan, LIU Weihua, TAN Zheng. Hot Corrosion Behavior of Brazed Joints of Single Crystal Ni-based DD10 Alloy Beneath Na2SO4 Deposit in Air at 850 and 900 ℃. Journal of Chinese Society for Corrosion and protection, 2025, 45(5): 1361-1370.

Download:  HTML  PDF(27261KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The hot corrosion behavior of brazed joints of single crystal Ni-based DD10 alloy beneath Na2SO4 deposits in air at 850 and 900 ℃ was studied. The results indicate that after 200 h exposure at 850 ℃, the corrosion layer thickness of the DD10 alloy and the brazed joint was 12 and 14 μm, respectively, demonstrating their similar corrosion resistance. However, after 200 h exposure at 900 ℃, the corrosion layer thickness increased to 28 μm for the master alloy and 44 μm for the brazed joint, indicating a change in the corrosion mechanism, with the brazed joint exhibiting inferior hot corrosion resistance compared to the master alloy. The corrosion products at both temperatures consist mainly of metal oxides, spinel phases, and sulfides. Notably, at 900 ℃, additional corrosion products, including CrTaO4, (Ni, Co)Co2O4, and Ni3S2, were identified, which were absent at 850 ℃. During the welding process, the precipitated phases in the weld zone consume corrosion-resistant elements, increase the phase boundaries, and consequently reduce the hot corrosion resistance of the brazed joint.

Key words:  single crystal superalloy      DD10 alloy      hot corrosion      brazing      precipitation phase     
Received:  20 December 2024      32134.14.1005.4537.2024.400
ZTFLH:  TG172  
Fund: National Science and Technology Major Project(E110A104)
Corresponding Authors:  LIU Enze, E-mail: nzliu@imr.ac.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.400     OR     https://www.jcscp.org/EN/Y2025/V45/I5/1361

Fig.1  Microstructures of DD10 alloy (a) and brazed joint in welded region (b)
PositionNiCoCrTiAlWTaMoCB
A3.391.9226.573.97-22.821.872.790.2036.48
B4.263.5538.552.53-13.060.811.970.1235.17
C2.543.8854.700.68-3.05-0.86-34.30
D58.7415.934.7411.583.031.193.580.090.850.28
E2.993.8752.890.84-3.620.120.85-34.81
F2.281.121.0827.82-4.9516.600.0246.12-
G51.1715.4918.802.996.171.970.780.250.771.43
Table 1  EPMA chemical composition analysis of the points marked in Fig.1b (atomic fraction / %)
Fig.2  Macroscopic morphologies of DD10 alloy and brazed joint after hot corrosion at 850 and 900 ℃ for 200 h
Fig.3  Mass change curves of DD10 alloy and brazed joint after hot corrosion at 850 ℃ for 200 h
Fig.4  Mass change curves of DD10 alloy and brazed joint after hot corrosion at 900 ℃ for 200 h
Fig.5  XRD patterns of DD10 alloy and brazed joint after hot corrosion at 850 ℃ for 200 h
Fig.6  Cross-section SEM morphology and corresponding EDS mapping results of DD10 alloy after hot corrosion at 850 ℃ for 200 h
Fig.7  Cross-section SEM morphology and corresponding EDS mapping results of DD10 brazed joint after hot corrosion at 850 ℃ for 200 h
Fig.8  XRD patterns of DD10 alloy and brazed joint after hot corrosion at 900 ℃ for 200 h
Fig.9  Cross-section SEM morphology and corresponding EDS mapping results of DD10 alloy after hot corrosion at 900 ℃ for 200 h
Fig.10  Cross-section SEM morphology and corresponding EDS mapping results of DD10 brazed joint after hot corrosion at 900 ℃ for 200 h
ReactionΔG850 oC / kJ·mol-1
8/3Al + 2O2 (g) = 4/3Al2O3-1760.877
2Ti + 2O2 (g) = 2TiO2-1481.985
8/3Cr + 2O2 (g) = 4/3Cr2O3-1126.937
8/3Al + Na2SO4 (s) = 4/3Al2O3 + Na2S (l)-1113.022
2Ti + Na2SO4 (s) = 2TiO2 + Na2S (l)-834.130
8/3Cr + Na2SO4 (s) = 4/3Cr2O3 + Na2S (l)-479.081
6TiO2 + Na2SO4 (s) = Na2Ti6O13 + SO3 (g)140.699
Cr2O3 + Na2SO4 (s) = Na2Cr2O4 + SO3 (g)317.719
Al2O3 + Na2SO4 (s) = 2NaAlO2 + SO3 (g)326.557
Table 2  Standard Gibbs free energy changes of the reactions of Ti, Cr and Al with oxygen and solid Na2SO4 at 850 ℃
[1] Li T F. High Temperature Oxidation and Hot Corrosion of Metals [M]. Beijing: Chemical Industry Press, 2003: 257
李铁藩. 金属高温氧化和热腐蚀 [M]. 北京: 化学工业出版社, 2003: 257
[2] Yu Z F. Corrosion behavior of Ni-based superalloy at high temperature corrosion interaction with low temperature corrosion [D]. Shenyang: Northeastern University, 2014
余钟芬. 高低温交互作用下镍基高温合金腐蚀行为的研究 [D]. 沈阳: 东北大学, 2014
[3] Guo J T. The current situation of application and development of superalloys in the fields of energy industry [J]. Acta Metall. Sin., 2010, 46: 513
郭建亭. 高温合金在能源工业领域中的应用现状与发展 [J]. 金属学报, 2010, 46: 513
doi: 10.3724/SP.J.1037.2009.00860
[4] Ren W P, Li Q, Li X H, et al. Hot corrosion resistance of direct solidified Ni-based superalloy DZ466 and its thermal barrier coating [J]. Heat Treat. Met., 2018, 43: 213
任维鹏, 李 青, 李相辉 等. 定向镍基高温合金DZ466及其热障涂层的抗热腐蚀性能 [J]. 金属热处理, 2018, 43: 213
[5] Yu Z H, Liu B L, Wang P H, et al. Research progress on the influence of hot corrosion on mechanical properties of superalloys and protective measures [J]. Foundry, 2019, 68: 550
余竹焕, 刘蓓蕾, 王盼航 等. 热腐蚀对高温合金力学性能的影响以及防护措施的研究进展 [J]. 铸造, 2019, 68: 550
[6] Guan X R, Wei J, Liu E Z, et al. Effect of Ti content on hot corrosion resistance of Nickel-base superalloy [J]. Rare Met. Mater. Eng., 2012, 41: 1990
管秀荣, 魏 健, 刘恩泽 等. Ti含量对镍基高温合金抗热腐蚀性能的影响 [J]. 稀有金属材料与工程, 2012, 41: 1990
[7] Zhao D Z. Hot corrosion and protection of gas turbine blade in marine environment [J]. Equip. Environ. Eng., 2011, 8(5): 100
赵德孜. 海洋环境下燃气轮机涡轮叶片的热腐蚀与防护 [J]. 装备环境工程, 2011, 8(5): 100
[8] Liu C B. Microstructure and properties of hot corrosion resistant nickel base single crystal superalloy DD10 [D]. Shenyang: University of Chinese Academy of Sciences, 2010
刘成宝. 抗热腐蚀镍基单晶高温合金DD10组织与性能的研究 [D]. 沈阳: 中国科学院大学, 2010
[9] Liu C B, Li H, Lou L H. Isothermal oxidation behavior of single-crystal nickel-base superalloy DD10 [J]. Rare Met. Mater. Eng., 2010, 39: 1407
刘成宝, 李 辉, 楼琅洪. 镍基单晶高温合金DD10的恒温氧化行为 [J]. 稀有金属材料与工程, 2010, 39: 1407
[10] Li Y M, Liu H, Qiao Z, et al. Comparison on hot corrosion behaviors of Ni-base superalloy DD5, DD10 and DSM11 [J]. Chin. J. Nonferrous Met., 2020, 30: 2105
李艳明, 刘 欢, 乔 志 等. 镍基高温合金DD5、DD10和DSM11热腐蚀行为比较 [J]. 中国有色金属学报, 2020, 30: 2105
[11] Wu E D, Sun G G, Chen B, et al. A neutron diffraction study of lattice distortion, mismatch and misorientation in a single-crystal superalloy after different heat treatments [J]. Acta Mater., 2013, 61: 2308
[12] Fan Z D, Wang D, Lou L H. Corporate effects of temperature and strain range on the low cycle fatigue life of a single-crystal superalloy DD10 [J]. Acta Metall. Sin. (Engl. Lett.), 2015, 28: 152
[13] Fan Z D, Wang D, Liu C, et al. Low-cycle fatigue properties of nickel-based superalloys processed by high-gradient directional solidification [J]. Acta Metall. Sin. (Engl. Lett.), 2017, 30: 878
[14] Huang M, Zhang G, Wang D, et al. Microstructure and stress-rupture property of large-scale complex nickel-based single crystal casting [J]. Acta Metall. Sin. (Engl. Lett.), 2018, 31: 887
[15] Mo F J, Sun G G, Yang Z L, et al. Elastic tension induced lattice distortions in DD10 single crystal nickel-based superalloy at 500 ℃/760 MPa using in situ neutron diffraction [J]. Mater. Sci. Eng., 2019, 743A: 504
[16] Yu Z H, Wang P H, Zhang Y, et al. Research progress on factors affecting hot corrosion of superalloy [J]. Foundry Technol., 2018, 39: 226
余竹焕, 王盼航, 张 洋 等. 高温合金热腐蚀性能影响因素的研究进展 [J]. 铸造技术, 2018, 39: 226
[17] Wang L, Liu C Y, Han Z Y, et al. Hot corrosion behavior and evaluation of turbine components and materials used for gas turbine engine [J]. J. Chin. Soc. Corros. Prot., 2011, 31: 399
王 理, 刘春阳, 韩振宇 等. 燃气轮机涡轮零部件及材料热腐蚀行为与评价方法研究 [J]. 中国腐蚀与防护学报, 2011, 31: 399
[18] Pei Y W, Zhou C G. Improved hot corrosion resistance of Dy-Co-modified aluminide coating by pack cementation process on nickel base superalloys [J]. Corros. Sci., 2016, 112: 710
[19] Fu C, Ren Z M, Cao G H. Preparation and structure of Al + Si codeposited coatings on Ni-based superalloys [J]. Rare Met. Mater. Eng., 2017, 46: 1612
付 超, 任忠鸣, 操光辉. Ni基高温合金表面Al + Si共渗涂层的制备及其结构 [J]. 稀有金属材料与工程, 2017, 46: 1612
[20] Mrowec S, Werber T, Zastawnik M. The mechanism of high temperature sulphur corrosion of nickel-chromium alloys [J]. Corros. Sci., 1966, 6: 47
[21] Yu Z F, Zheng Z, Liu E Z, et al. Hot corrosion behavior of Nickel-base superalloys DZ68 and K438G with low segregation [J]. J. Chin. Soc. Corros. Prot., 2008, 28: 277
于忠锋, 郑 志, 刘恩泽 等. 两种低偏析镍基高温合金抗热腐蚀性能的研究 [J]. 中国腐蚀与防护学报, 2008, 28: 277
[22] Ning L K. Investigation on the hot corrosion resistance of four Ni-based superalloys [D]. Dalian: Dalian University of Technology, 2009
宁礼奎. 四种镍基高温合金的抗热腐蚀性能研究 [D]. 大连: 大连理工大学, 2009
[23] Yuan W. Hot corrosion behaviour and high temperature tensile property of a second generation Ni-based single crystal superalloy [D]. Taiyuan: Taiyuan University of Science & Technology, 2023
袁 伟. 一种第二代镍基单晶高温合金的热腐蚀行为及高温拉伸性能研究 [D]. 太原: 太原科技大学, 2023
[24] Lu X D, Tian S G, Chen T, et al. Internal oxidation and internal sulfuration of Ni-base alloy with high Cr content during hot corrosion in molten sulfate [J]. Rare Met. Mater. Eng., 2014, 43: 79
卢旭东, 田素贵, 陈 涛 等. 高铬镍基合金熔融硫酸盐热腐蚀过程中内氧化和内硫化行为的研究 [J]. 稀有金属材料与工程, 2014, 43: 79
[25] Zhao S Q, Xie X S. Hot corrosion behaviors of new Ni-Cr-Co base superalloy [J]. Mater. Sci. Technol., 2006, 14: 506
赵双群, 谢锡善. 新型Ni-Cr-Co基高温合金的热腐蚀行为 [J]. 材料科学与工艺, 2006, 14: 506
[26] Fryburg G C, Kohl F J, Stearns C A, et al. Chemical reactions involved in the initiation of hot corrosion of B-1900 and NASA-TRW VIA [J]. J. Electrochem. Soc., 1982, 129: 571
[27] Huang Q Y, Li H K. High Temperature Alloys [M]. Beijing: Metallurgical Industry Press, 2000
黄乾尧, 李汉康. 高温合金 [M]. 北京: 冶金工业出版社, 2000
[28] Lin Z J, Li M S, Wang J Y, et al. High-temperature oxidation and hot corrosion of Cr2AlC [J]. Acta Mater., 2007, 55: 6182
[29] Liu Y L. Studies on the high temperature oxidation and hot corrosion behavior of Ni-based superalloys K4750 and K4169 [D]. Hefei: University of Science and Technology of China, 2021
刘艳丽. 镍基高温合金K4750和K4169的高温氧化和热腐蚀行为研究 [D]. 合肥: 中国科学技术大学, 2021
[30] Song P. Studies on the hot corrosion behavior of three Ni-base single crystal superalloys [D]. Hefei: University of Science and Technology of China, 2020
宋 鹏. 三种镍基单晶高温合金的热腐蚀行为研究 [D]. 合肥: 中国科学技术大学, 2020
[31] Liu G M, Yang H C, Liang Q, et al. Corrosion behavior of the Ni-Cr-Fe base superalloy GH984G in a synthetic coal ash and flue gas environment [J]. Acta Metall. Sin. (Engl. Lett.), 2017, 30: 863
[32] Li M S. High Temperature Corrosion of Metals [M]. Beijing: Metallurgical Industry Press, 2001: 385
李美栓. 金属的高温腐蚀 [M]. 北京: 冶金工业出版社, 2001: 385
[33] Song P, Liu M F, Jiang X W, et al. Influence of alloying elements on hot corrosion resistance of nickel-based single crystal superalloys coated with Na2SO4 salt at 900 ℃ [J]. Mater. Des., 2021, 197: 109197
[34] Nagai H, Okabayashi M. Deleterious effect of Ti addition on the oxidation resistance of Ni-20Cr alloy [J]. Trans. Japan Ins. Met., 1981, 22: 691
[35] Chang J X, Wang D, Liu T, et al. Role of tantalum in the hot corrosion of a Ni-base single crystal superalloy [J]. Corros. Sci., 2015, 98: 585
[36] Tsaur C C, Rock J C, Wang C J, et al. The hot corrosion of 310 stainless steel with pre-coated NaCl/Na2SO4 mixtures at 750 ℃ [J]. Mater. Chem. Phys., 2005, 89: 445
[37] Goebel J A, Pettit F S. Na2SO4-induced accelerated oxidation (hot corrosion) of nickel [J]. Metall. Trans., 1970, 1: 1943
[38] Rapp R A. Chemistry and electrochemistry of hot corrosion of metals [J]. Mater. Sci. Eng., 1987, 87: 319
[39] Luthra K L, Leblanc Jr O H. Low temperature hot corrosion of Co-Cr-Al alloys [J]. Mater. Sci. Eng., 1987, 87: 329
[40] Abbasi M, Kim B K, Shim D I, et al. Effects of surface deformation on the oxidation behavior of INCONEL 740 superalloy in humid air [J]. J. Alloy. Compd., 2016, 683: 212
[41] Cho J H, Kim T W, Son K S, et al. Aluminizing and boroaluminizing treatments of Mar-M247 and their effect on hot corrosion resistance in Na2SO4-NaCl molten salt [J]. Met. Mater. Int., 2003, 9: 303
[42] Jing Y H, Liu E Z, Zheng Z, et al. Hot corrosion resistance of filler alloy BCo46 [J]. Acta Metall. Sin., 2014, 50: 79
doi: 10.3724/SP.J.1037.2013.00216
景艳红, 刘恩泽, 郑 志 等. 钎料合金BCo46的抗热腐蚀性能 [J]. 金属学报, 2014, 50: 79
doi: 10.3724/SP.J.1037.2013.00216
[43] Hu G X, Cai X, Rong Y H, et al. Fundamentals of Materials Science 3rd ed. [M]. Shanghai: Shanghai Jiao Tong University Press, 2010: 154
胡赓祥, 蔡 珣, 戎咏华 等. 材料科学基础3版 [M]. 上海: 上海交通大学出版社, 2010: 154
[1] ZHANG Yongkang, ZHAI Haimin, LI Xuqiang, LI Wensheng. Hot Corrosion Behavior of Fe-based Amorphous Coatings in Mixed Salts of Na2SO4 + K2SO4 and Na2SO4 + NaCl[J]. 中国腐蚀与防护学报, 2025, 45(1): 92-102.
[2] HUANG Qinying, LI Yuzhuo, YANG Yingfei, REN Pan, WANG Qiwei. Hot Corrosion Behavior of Pt Modified AlCoCrFeNi2.1 Eutectic High Entropy Alloy[J]. 中国腐蚀与防护学报, 2025, 45(1): 115-126.
[3] WANG Yue, GENG Shujiang, WANG Jinlong, WANG Fuhui, SUN Qingyun, WU Yong, XIA Siyao. Corrosion Resistance of CVD Aluminized Coating on K444 Alloy Beneath a Thin Deposits of 95%Na2SO4 + 5%NaCl at High Temperature[J]. 中国腐蚀与防护学报, 2025, 45(1): 127-136.
[4] PEI Haiqing, XIAO Jingbo, LI Wei, YU Haoyu, WEN Zhixun, YUE Zhufeng. First Principles Study on Effect of Al-O Element Aggregation on Oxidation of a Ni-based Single Crystal Superalloy[J]. 中国腐蚀与防护学报, 2025, 45(1): 173-181.
[5] YU Zheng, CHEN Minghui, WANG Jinlong, YANG Shasha, WANG Fuhui. Influence of Alkali Metal Sulfate- and Chloride-salts Content in Artificial Coal Ash on Corrosion Behavior of HR3C Steels With and Without Aluminizing[J]. 中国腐蚀与防护学报, 2024, 44(6): 1389-1398.
[6] ZHANG Jinlong, FU Guangyan, NING Likui, LIU Enze, TAN Zheng, TONG Jian, ZHENG Zhi. Hot Corrosion Behavior of a Nickel Based Single Crystal High Temperature Alloy Subjected to Different Heat Treatments[J]. 中国腐蚀与防护学报, 2024, 44(6): 1625-1632.
[7] HONG Xiaomu, WANG Yongqiang, LI Na, TIAN Kai, DU Juan. Effect of Aging on Microstructures and Localized Corrosion of Custom455 Martensitic Age-hardening Stainless Steel[J]. 中国腐蚀与防护学报, 2024, 44(5): 1285-1294.
[8] LI Jiaheng, QIAN Wei, ZHU Jingjing, CAI Jie, HUA Yinqun. Influence of Laser Shock Peening on Microstructure and Oxidation Performance of Nickel-based Single Crystal Superalloy[J]. 中国腐蚀与防护学报, 2024, 44(5): 1295-1304.
[9] HU Qi, GENG Shujiang, WANG Jinlong, WANG Fuhui, SUN Qingyun, WU Yong, XIA Siyao. Hot Corrosion Behavior of Inconel 718 Without and With Aluminide Coating in Air Beneath a Thin Film of Salt Mixture of Na2SO4 + 5%NaCl[J]. 中国腐蚀与防护学报, 2024, 44(3): 623-634.
[10] LIAO Minxing, LIU Jun, DONG Baojun, LENG Xuesong, CAI Zelun, WU Junwei, HE Jianchao. Effect of Salt Spray Environment on Performance of 1Cr18Ni9Ti Brazed Joint[J]. 中国腐蚀与防护学报, 2023, 43(6): 1312-1318.
[11] QU Weiwei, CHEN Zehao, PEI Yanling, LI Shusuo, WANG Fuhui. Spreading and Corrosion Behavior of CMAS Melt on Different Materials for Thermal Barrier Coating[J]. 中国腐蚀与防护学报, 2023, 43(6): 1407-1412.
[12] WANG Hua, WANG Yingjie, LIU Enze. Hot Corrosion Behavior of New Type Co-Al-W Superalloys with Different Ni Contents[J]. 中国腐蚀与防护学报, 2023, 43(6): 1419-1426.
[13] SHANG Jin, GU Yan, ZHAO Jing, WANG Zhe, ZHANG Bo, ZHAO Tongjun, CHEN Zehao, WANG Jinlong. Corrosion Behavior in Molten Salts at 850 ℃ and Its Effect on Mechanical Properties of Hastelloy X Alloy Fabricated by Additive Manufacturing[J]. 中国腐蚀与防护学报, 2023, 43(3): 671-676.
[14] SHEN Jubao, CUI Yu, LIU Li, LIU Rui, MENG Fandi, WANG Fuhui. Cyclic Hot Corrosion Behavior of DZ40M and K452 Superalloys Beneath Molten Deposit NaCl[J]. 中国腐蚀与防护学报, 2023, 43(2): 280-288.
[15] BAO Yefeng, WU Zhuyu, CHEN Zhe, GUO Linpo, WANG Zirui, CAO Chong, SONG Qining. Effect of Sensitization Treatment on Electrochemical Corrosion and Pitting Corrosion of 00Cr21NiMn5Mo2N Stainless Steel[J]. 中国腐蚀与防护学报, 2022, 42(6): 1027-1033.
No Suggested Reading articles found!