Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (5): 1371-1380    DOI: 10.11902/1005.4537.2024.361
Current Issue | Archive | Adv Search |
Corrosion Behavior of Steel Rebar in Iron Tailings-based Geopolymers in Saline-Alkali Environment
LIU Shuo1,2, WU Lipeng1,2(), LI Jinglun1,2, XING Jinzheng1,2, LI Sai1,2
1 Key Laboratory of Roads and Railway Engineering Safety Control of Ministry of Education, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
2 School of Civil Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
Cite this article: 

LIU Shuo, WU Lipeng, LI Jinglun, XING Jinzheng, LI Sai. Corrosion Behavior of Steel Rebar in Iron Tailings-based Geopolymers in Saline-Alkali Environment. Journal of Chinese Society for Corrosion and protection, 2025, 45(5): 1371-1380.

Download:  HTML  PDF(6645KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behavior of HPB235 hot rolled round steel rebar buried in iron tailings-based geopolymers in a simulated saline-alkali environment was investigated via electrochemical impedance spectroscopy, corrosion potential and polarization curve methods, so that to clarify the influence of the formular of geopolymers on the electrochemical parameters of the test blocks and the corrosion rate of steel bar. The results show that during the corrosion process by applied electric current, the resistance of the test block increases first and then decreases, indicating that SO42- and Cl- can increase the compactness of the test block. In conditions with setting solution concentration and applied electric current, the test block with reasonable formular is conducive to the protection and delays the corrosion process of steel bars. The influence of ceramic powder content on the corrosion of steel bars is particularly obvious. By comparing the evolution of the free corrosion potential, corrosion current density Icorr and impedance Rc of the steel bar with test geopolymers block of different formulars, it is found that the test block with low ceramic powder content, high sodium silicate modulus, low alkali content and moderate water binder has better protection effect for the steel bar.

Key words:  saline-alkali environment      geopolymers      rusting of steel bars      electrochemistry     
Received:  01 November 2024      32134.14.1005.4537.2024.361
ZTFLH:  TU503  
Fund: Central Government-Guided Local Science and Technology Development Funding Project(236Z3810G);Hebei Provincial Natural Science Foundation(E2021210136)
Corresponding Authors:  WU Lipeng, E-mail: lipengwu@outlook.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.361     OR     https://www.jcscp.org/EN/Y2025/V45/I5/1371

Fig.1  Particle size distribution of iron tailings powders
MaterialSiO2Al2O3CaOFe2O3K2OMgONa2OK2OP2O5
IT61.538.906.0513.311.845.821..211.850.68
Ceramics66.6319.013.570.941.840.851.0100
Table 1  Chemical compositions of iron tailings and ceramic powders (mass fraction / %)
SampleWater glassNaOHWaterIT sandCeramic powderIT powder
A231.6457.83173.461291.37193.71451.98
B323.6161.39135.821252.78187.91438.47
C426.9462.7188.951214.26182.14424.99
D380.4355.8870.241262.31252.46378.69
E312.7978.09140.811245.54249.12373.66
F269.4651.12201.761251.77250.35375.53
G377.8571.6869.771253.79313.44313.44
H317.0646.57142.701262.44315.61315.61
I267.6566.82200.421243.41310.85310.85
Table 2  Mix proportions of iron tailings-based geopolymers in orthogonal tests (kg/m3)
Fig.2  Schematic diagram of semi-immersion corrosion testing device
Fig.3  Compressive strengths of test blocks with different ceramic powder contents (a), water-binder ratios (b), alkali con-tents (c) and moduli (d)
Fig.4  SEM image of iron tailings-based geopolymers
Fig.5  EDS results of typical regions marked as spot 30 (a) and spot 32 (b) in Fig.4
Fig.6  CaO-SiO2-Al2O3 ternary diagram
Fig.7  XRD patterns of iron tailings-based geopolymers before and after corrosion in saline-alkali simulated solution
Fig.8  Nyquist curves of test blocks with the ceramic powder contents of 30% (a), 40% (b) and 50% (c) after electrolytic accelerated corrosion for different time
Fig.9  Equivalent circuit diagram of EIS of test blocks after electrolytic accelerated corrosion for different time
Fig.10  Rc values of test blocks with different ceramic powder contents (a), water-binder ratios (b), moduli (c) and alkali contents (d)
Fig.11  Corrosion potentials of test blocks with different ceramic powder contents (a), water-binder ratios (b), moduli (c) and alkali contents (d)
Fig.12  Tafel polarization curves of test blocks with ceramic powder contents of 30% (a), 40% (b) and 50% (c) after electro-lytic accelerated corrosion for different time
Fig.13  Corrosion current densities of test blocks with different ceramic powder contents (a), water-binder ratios (b), moduli (c) and alkali contents (d)
Fig.14  Polarization resistances of test blocks with different ceramic powder contents (a), water-binder ratios (b), moduli (c) and alkali contents (d)
[1] Lin P Z, Wang Y Y. Durability of concrete bridge exposed to chloride ion erosion in saline alkali soil [J]. Bridge Constr., 2022, 52(6): 73
蔺鹏臻, 王雲一. 混凝土桥梁受盐碱地中氯离子侵蚀的耐久性研究 [J]. 桥梁建设, 2022, 52(6): 73
[2] Júnior N S A, Neto J S A, Santana H A, et al. Durability and service life analysis of metakaolin-based geopolymer concretes with respect to chloride penetration using chloride migration test and corrosion potential [J]. Constr. Build. Mater., 2021, 287: 122970
[3] Shee-Ween O, Cheng-Yong H, Yun-Ming L, et al. Sintered and unsintered pressed fly ash geopolymer: A comprehensive study on structural transformation in nitric and sulfuric acid [J]. J. Build. Eng., 2024, 93: 109823
[4] Wang A G, Zheng Y, Zhang Z H, et al. The durability of alkali-activated materials in comparison with ordinary portland cements and concretes: A review [J]. Engineering, 2020, 6: 695
[5] Saptamongkol A, Sata V, Wongsa A, et al. Hybrid geopolymer paste from high calcium fly ash and glass wool: Mechanical, microstructure, and sulfuric acid and magnesium sulfate resistance characteristics [J]. J. Build. Eng., 2023, 76: 107245
[6] Wang H J, Wang Y J, Li W C, et al. Report on National Mine Resources Conservation and Comprehensive Utilization [M]. Beijing: Geological Publishing House, 2019: 14
王海军, 王伊杰, 李文超 等. 全国矿产资源节约与综合利用报告2019 [M]. 北京: 地质出版社, 2019: 14
[7] Huang W, Xue K, Zhang Z L, et al. Research and application progress of iron tailings sand [J]. Bull. Chin. Ceram. Soc., 2024, 43: 3655
黄 伟, 薛 葵, 张子龙 等. 铁尾矿砂的研究与应用进展 [J]. 硅酸盐通报, 2024, 43: 3655
[8] Shang M G, Zhang Y S, He Z M, et al. Study on corrosion deterioration of reinforced concrete under constant acceleration test based on double stress [J]. Mater. Rep., 2022, 36: 21030289
尚明刚, 张云升, 何忠茂 等. 基于双应力的钢筋混凝土恒加试验腐蚀劣化规律研究 [J]. 材料导报, 2022, 36: 21030289
[9] Tong Z F, Zeng Q P, Wang J X, et al. Research status and prospects of geopolymers preparation from tailings [J]. Nonferr. Met. Sci. Eng., 2021, 12(4): 96
佟志芳, 曾庆钋, 王佳兴 等. 利用尾矿制备地聚物研究现状及展望 [J]. 有色金属科学与工程, 2021, 12(4): 96
[10] Liu J R, Shang H S, Wang W Z, et al. Current density and corrosion morghology of steel bar corrosion in reinforced concrete [J]. Corros. Prot., 2021, 42(7): 34
刘继睿, 商怀帅, 王玮钊 等. 钢筋混凝土的通电锈蚀电流密度及钢筋锈蚀形貌 [J]. 腐蚀与防护, 2021, 42(7): 34
[11] Qiao G B, Qiao H X, Lu C G. Study on energized corrosion mechanism of reinforced concrete in groundwater environment of Lanzhou metro [J]. Mater. Rep., 2022, 36: 21010008
乔国斌, 乔宏霞, 路承功. 兰州地铁地下水环境中钢筋混凝土通电锈蚀机理研究 [J]. 材料导报, 2022, 36: 21010008
[12] Zhang J H, Yi C H, Wang S K, et al. Accelerated corrosion of steel bars in new and old concrete structures [J]. J. Chin. Ceram. Soc., 2022, 50: 2096
张菊辉, 衣存浩, 王诗昆 等. 新老混凝土的钢筋加速锈蚀 [J]. 硅酸盐学报, 2022, 50: 2096
[13] Zuo X B, Qiu L F, Tang Y J, et al. Corrosion process of steel bar in cement pastes under combined action of chloride and sulfate attacks [J]. J. Build. Mater., 2017, 20: 352
左晓宝, 邱林峰, 汤玉娟 等. 氯盐和硫酸盐侵蚀下水泥净浆中钢筋锈蚀过程 [J]. 建筑材料学报, 2017, 20: 352
[14] Da B, Yu H F, Ma H Y, et al. Equivalent electrical circuits fitting of electrochemical impedance spectroscopy for rebar steel corrosion of coral aggregate concrete [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 260
达 波, 余红发, 麻海燕 等. 等效电路拟合珊瑚混凝土中钢筋锈蚀行为的电化学阻抗谱研究 [J]. 中国腐蚀与防护学报, 2019, 39: 260
[15] Deng X, Wu Q. Reinforcement corrosion of coral concrete with different reinforcement types and protective thickness under bending stress [J]. Bull. Chin. Ceram. Soc., 2023, 42: 898
邓 潇, 吴 庆. 弯曲应力作用下不同钢筋种类和保护层厚度珊瑚混凝土的钢筋锈蚀研究 [J]. 硅酸盐通报, 2023, 42: 898
[16] Garcia-Lodeiro I, Palomo A, Fernández-Jiménez A, et al. Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O-CaO-Al2O3-SiO2-H2O [J]. Cem. Concr. Res., 2011, 41: 923
[17] Zheng Y, Wang A G, Liu K W, et al. Sulfate resistance and mechanism analysis of different geopolymer mortars [J]. J. Build. Mater., 2021, 24: 1224
郑 毅, 王爱国, 刘开伟 等. 不同地聚物砂浆抗硫酸盐侵蚀性能及其机理分析 [J]. 建筑材料学报, 2021, 24: 1224
[18] Lyu Q F, Wang Z S, Chen Y, et al. Study on influence mechanism of sodium chloride on the strength of alkali-activated geopolymers [J]. J. Funct. Mater., 2020, 51: 2067
吕擎峰, 王子帅, 陈 臆 等. 氯化钠对碱激发地聚物强度影响机理研究 [J]. 功能材料, 2020, 51: 2067
doi: 10.3969/j.issn.1001-9731.2020.02.011
[19] Qiao H X, Liu Z C, Lu C G, et al. Electrochemical characteristics of reinforced concrete with multiple cementitious system in carbonization environment [J]. J. Hunan Univ. (Nat. Sci.), 2023, 50(3): 110
乔宏霞, 刘志超, 路承功 等. 碳化环境下多元胶凝体系钢筋混凝土电化学特性 [J]. 湖南大学学报(自然科学版), 2023, 50(3): 110
[20] Xie T Y, Visintin P, Zhao X Y, et al. Mix design and mechanical properties of geopolymer and alkali activated concrete: review of the state-of-the-art and the development of a new unified approach [J]. Constr. Build. Mater., 2020, 256: 119380
[21] Jiang M S, Li F, Zhou L A, et al. Effects of sodium carbonate, sodium hydroxide and water glass composite activation on properties of geopolymer cementitious materials [J]. Bull. Chin. Ceram. Soc., 2024, 43: 929
蒋明屾, 李 飞, 周理安 等. 碳酸钠、氢氧化钠与水玻璃复合激发对地聚物胶凝材料性能的影响 [J]. 硅酸盐通报, 2024, 43: 929
[1] WANG Taotao, XUE Rongjie, MA Xiaowei, WAN Haofeng, WANG Dongpeng, LIU Zhenguang. Effect of Surface Roughness, Concentration and Temperature of NaOH Solution on Corrosion Behavior of a Zr-based Metallic Glass[J]. 中国腐蚀与防护学报, 2025, 45(5): 1253-1264.
[2] LI Xiangdong, LIU Changhao, ZHANG Chi, CHEN Wenjuan, CUI Chenyue, ZHU Yongwen, WANG Shushu. Electrodeposition and Performance of WC-Zn Composite Coatings on Q235 Carbon Steel[J]. 中国腐蚀与防护学报, 2025, 45(3): 795-802.
[3] JIN Zhenting, SONG Qining, LIU Qi, PENG Chunlan, XU Nan, LU Qiqing, BAO Yefeng, ZHAO Lijuan, ZHAO Jianhua. Long-term Corrosion Behavior of Three Cu-alloys in 3.5%NaCl Solutions with Different pH Values[J]. 中国腐蚀与防护学报, 2025, 45(2): 506-514.
[4] YANG Zhenyu, JI Chao, GUO Liya, XU Run, PENG Wei, ZHAO Hongshan, WEI Xicheng, DONG Han. Initial Corrosion Behavior of Several Pure Irons and Steels in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2025, 45(2): 469-478.
[5] ZHANG Yani, WANG Simin, FAN Bing. Corrosion and Passivation Behavior of TC4 Ti-alloy in a Simulated Downhole Liquid in High-temperature and High-pressed O2 + CO2 Environment[J]. 中国腐蚀与防护学报, 2024, 44(6): 1518-1528.
[6] XIE Wenzhen, WANG Zhenyu, HAN En-Hou. Passivation Behavior of Corrosion Resistant Rebar Steels as Bare Steels in a Simulated Concrete Pore Fluid and as Rebar Steels Embedded in Concrete Made of Cement and Sea-sand in a Simulated Seawater[J]. 中国腐蚀与防护学报, 2024, 44(6): 1454-1464.
[7] FENG Shaoyu, ZHOU Zhaohui, YANG Lanlan, QIAO Yanxin, WANG Jinlong, WANG Fuhui. Electrochemical and Wear Behavior of TC4 Alloy in Marine Environment[J]. 中国腐蚀与防护学报, 2024, 44(5): 1243-1254.
[8] ZHU Liyang, CHEN Junquan, ZHANG Xinxin, DONG Zehua, CAI Guangyi. Research Progress of Effect of Magnetic Field on Metal Corrosion[J]. 中国腐蚀与防护学报, 2024, 44(5): 1117-1124.
[9] PENG Wenshan, XING Shaohua, QIAN Yao, LIN Cunguo, HOU Jian, ZHANG Dalei. Effect of Flowing Seawater on Corrosion Characteristics of Passivation Film on TA2 Pure-Ti Pipes[J]. 中国腐蚀与防护学报, 2024, 44(4): 1038-1046.
[10] XING Shaohua, PENG Wenshan, QIAN Yao, LI Xiangbo, MA Li, ZHANG Dalei. Effect of Seawater Flow Velocity on Pitting Corrosion of 2205 Stainless Steel with Different Surface Treatments[J]. 中国腐蚀与防护学报, 2024, 44(3): 658-668.
[11] DAI Wei, LIU Yuanyuan, TU Wenrui, SUN Yangting, LI Jin, JIANG Yiming. Corrosion Behavior of Ag/Sn Galvanic Couple at Applied Potential[J]. 中国腐蚀与防护学报, 2024, 44(3): 700-706.
[12] WANG Tongtong, ZHANG Juanrui, GAO Yun, GAO Rongjie. Preparation of Lotus Root-like TiO2 Nanotube Arrays in NH4F-(NH4)2SO4 Composite Electrolyte and Its Photogenerated Cathodic Protection Performance[J]. 中国腐蚀与防护学报, 2024, 44(2): 389-395.
[13] LI Wenjie, CHE Xiaoyu, TANG Yongcun, LIU Guangming, TIAN Wenming, HE Hualin, LIU Chenhui. Effect of Plastic Deformation Processing on Corrosion Behavior of Pure Zinc in a Leaching Solution of Soil at Tianjin[J]. 中国腐蚀与防护学报, 2024, 44(2): 497-504.
[14] ZHAO Guoxian, LIU Ranran, DING Langyong, ZHANG Siqi, GUO Menglong, WANG Yingchao. Effect of Temperature on CO2-inducedCorrosion Behavior of 5Cr Steel in a Simulated Oilfield Produced High-temperature and High-pressured Water[J]. 中国腐蚀与防护学报, 2024, 44(1): 175-186.
[15] WANG Pengjie, SONG Yuhao, FAN Lin, DENG Kuanhai, LI Zhonghui, MEI Zongbin, GUO Lei, LIN Yuanhua. Inhibition of Q235 Steel in 1 mol/L HCl Solution by a New Efficient Imidazolium Schiff Base Corrosion Inhibitor[J]. 中国腐蚀与防护学报, 2024, 44(1): 59-70.
No Suggested Reading articles found!