Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (5): 1351-1360    DOI: 10.11902/1005.4537.2024.335
Current Issue | Archive | Adv Search |
Effect of CO2 Pressure on Stress Corrosion Cracking Susceptibility of X65 Pipeline Steel Used for Transporting Impure Supercritical CO2
CHENG Luyao1, XU Yanlei2, LI Jiawei1, SUN Chong1(), LIN Xueqiang1, SUN Jianbo1
1 School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China
2 China Petroleum Pipeline Research Institute Co., Ltd., Langfang 065000, China
Cite this article: 

CHENG Luyao, XU Yanlei, LI Jiawei, SUN Chong, LIN Xueqiang, SUN Jianbo. Effect of CO2 Pressure on Stress Corrosion Cracking Susceptibility of X65 Pipeline Steel Used for Transporting Impure Supercritical CO2. Journal of Chinese Society for Corrosion and protection, 2025, 45(5): 1351-1360.

Download:  HTML  PDF(14564KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In this study, the stress corrosion cracking behavior of X65 pipeline steel exposed to a supercritical CO2 environment with low water content and co-existence of O2, SO2, NO2, and H2S impurities was studied by means of slow strain rate tensile test, four-point-bending stress corrosion test, electrochemical measurement and surface analysis techniques. The effect of CO2 pressure change on the susceptibility of X65 pipeline steel to stress corrosion cracking (SCC) was discussed. The results show that X65 pipeline steel has a very low SCC susceptibility within the CO2 pressure range of 7.5 MPa to 14 MPa when being exposed to supercritical CO2 environment with low water content and co-existence of multiple impurities. X65 pipeline steel does not crack under the coupling effect of stress and impurity-containing CO2 streams during the overall test duration. However, X65 pipeline steel suffers from the slight ductility loss due to the corrosion effect, thereby demonstrating a certain SCC susceptibility. The SCC susceptibility of X65 pipeline steel decreases first and then increases as the rise of CO2 pressure from 7.5 MPa to 14 MPa, which is closely associated with the difference of corrosion degree caused by CO2 pressure change. When X65 pipeline steel is exposed to supercritical CO2 environment containing impurities, the content of corrosive substances in the formed aqueous phase and the protectiveness of the corrosion product film formed on the steel surface are changed with the variation of CO2 pressure. Therefore, under the coupling effect of stress and impurity-containing CO2 streams, the corrosion rate of X65 steel decreases first and then increases with the increase of CO2 pressure.

Key words:  X65 pipeline steel      supercritical CO2      CO2 pressure      stress corrosion     
Received:  12 October 2024      32134.14.1005.4537.2024.335
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(52001328);Fundamental Research Funds for the Central Universities(20CX06075A)
Corresponding Authors:  SUN Chong, E-mail: sunchong@upc.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.335     OR     https://www.jcscp.org/EN/Y2025/V45/I5/1351

Fig.1  Microstructure of X65 pipeline steel
Fig.2  Size of the specimen used for the slow strain rate tensile test (unit: mm)
ConditionCO2 pressure / MPaTemperature / ºCO2 / %H2S / %NO2 / %SO2 / %H2O / %
17.5500.010.010.010.010.01
210
314
Table 1  Test conditions for slow strain rate tensile and four-point-bending stress corrosion
Fig.3  Schematic diagram of four-point-bending stress corrosion testing device
Fig.4  Stress-strain curves of X65 pipeline steel after slow strain rate tensile test in impurity-containing supercritical CO2 environment at different CO2 pressures
Fig.5  Reduction-in-area (Ψ) (a) and SCC susceptibility index (IΨ-SCC) (b) of X65 pipeline steel after SSRT test in impurity-containing supercritical CO2 environment at different CO2 pressures
Fig.6  Fracture morphology of X65 pipeline steel in air (a1, a2) and supercritical CO2 environment with impurities at different CO2 pressures of 7.5 MPa (b1, b2), 10 MPa (c1, c2) and 14 MPa (d1, d2)
Fig.7  Corrosion rate of X65 pipeline steel with the stress of 520 MPa exposed to supercritical CO2 environment containing impurities at different CO2 pressures for 240 h
Fig.8  Macroscopic surface morphology of X65 pipeline steel before (a1-c1) and after the removal of corrosion products (a2-c2) after stress corrosion in supercritical CO2 environment with impurities at different CO2 pressures of 7.5 MPa (a1, a2), 10 MPa (b1, b2) and 14 MPa (c1, c2) for 240 h
Fig.9  SEM surface morphology (a1-c1), SEM cross-sectional morphology (a2-c2) and EDS map scanning analysis of cross section (a3-c3) of X65 pipeline steel after stress corrosion in impurity-containing supercritical CO2 environment at different CO2 pressures of 7.5 MPa (a1-a3), 10 MPa (b1-b3) and 14 MPa (c1-c3) for 240 h
Fig.10  Raman spectra of corrosion products on X65 pipeline steel with the stress of 520 MPa after stress corrosion in impurity-containing supercritical CO2 environment at different CO2 pressures for 240 h
Chemical7.5 MPa CO210 MPa CO214 MPa CO2
substanceMass / gMass fraction / %Mass / gMass fraction / %Mass / gMass fraction / %
H2O7.000 × 10-495.6353.500 × 10-495.0271.000 × 10-394.595
CO2(aq)3.260 × 10-54.3241.860 × 10-54.9415.936 × 10-55.379
O2(aq)2.441 × 10-103.242 × 10-52.064 × 10-105.486 × 10-51.012 × 10-99.169 × 10-5
H2S(aq)8.805 × 10-91.169 × 10-34.650 × 10-91.236 × 10-31.359 × 10-81.232 × 10-3
NO2(aq)3.738 × 10-84.950 × 10-31.365 × 10-83.622 × 10-32.645 × 10-82.394 × 10-3
SO2(aq)1.936 × 10-77.224 × 10-37.954 × 10-85.455 × 10-31.863 × 10-73.948 × 10-3
H+2.329 × 10-93.093 × 10-41.019 × 10-92.708 × 10-42.585 × 10-92.343 × 10-4
HCO3-8.425 × 10-91.119 × 10-35.471 × 10-91.454 × 10-32.052 × 10-81.860 × 10-3
HS-5.952 × 10-137.902 × 10-83.586 × 10-139.529 × 10-81.222 × 10-121.107 × 10-7
HSO3-1.761 × 10-72.339 × 10-27.468 × 10-81.985 × 10-21.806 × 10-71.637 × 10-2
Table 2  Total mass and concentration of CO2 and impurity components and the mass of main ions in the formed aqueous film calculated by OLI Analyzer Studio software
Fig.11  EIS of the corrosion film on X65 pipeline steel exposed to impurity-containing supercritical CO2 environment at different CO2 pressures: (a) Nyquist plots, (b) Bode plots, (c) equivalent circuit used for fitting the EIS data
CO2 pressure / MPaRs / Ω·cm2Rct / Ω·cm2Y0(Qdl) / Ω-1·cm-2·S nn(Qdl)
7.513.86349.20.0330.721
1014.04491.30.0510.858
1413.88151.40.0270.705
Table 3  EIS fitting data of the corrosion film on X65 steel exposed to supercritical CO2 environment with impurities at different CO2 pressures
[1] Truong T H, Lin B W, Lo C H, et al. Possible pathways for low carbon transitions: investigating the efforts of oil companies in CCUS technologies [J]. Energy Strategy Rev., 2024, 54: 101421
[2] Wei Y M, Kang J N, Liu L C, et al. A proposed global layout of carbon capture and storage in line with a 2 ℃ climate target [J]. Nat. Clim. Change, 2021, 11: 112
[3] Li Y, Zhao Q M, Xue Z J. Construction and innovative practice of new generation oil and gas development technology system [J]. J. China Univ. Petrol. (Ed. Nat. Sci.), 2023, 47: 45
李 阳, 赵清民, 薛兆杰. 新一代油气开发技术体系构建与创新实践 [J]. 中国石油大学学报(自然科学版), 2023, 47: 45
[4] Sim S, Cole I S, Bocher F, et al. Investigating the effect of salt and acid impurities in supercritical CO2 as relevant to the corrosion of carbon capture and storage pipelines [J]. Int. J. Greenh. Gas Con., 2013, 17: 534
[5] Lu S J, Zhang J J, Yang F, et al. Progress and future development trend of CO2 pipeline transportation technology [J]. J. Nanjing Univ. (Nat. Sci.), 2022, 58: 944
陆诗建, 张娟娟, 杨 菲 等. CO2管道输送技术进展与未来发展浅析 [J]. 南京大学学报(自然科学), 2022, 58: 944
[6] De Visser E, Hendriks C, Barrio M, et al. Dynamis CO2 quality recommendations [J]. Int. J. Greenh. Gas Con., 2008, 2: 478
[7] Sonke J, Bos W M, Paterson S J. Materials challenges with CO2 transport and injection for carbon capture and storage [J]. Int. J. Greenh. Gas Con., 2022, 114: 103601
[8] Onyebuchi V E, Kolios A, Hanak D P, et al. A systematic review of key challenges of CO2 transport via pipelines [J]. Renew. Sust. Energ. Rev., 2018, 81: 2563
[9] Sun C, Yan X L, Sun J B, et al. Unraveling the effect of O2, NO2 and SO2 impurities on the stress corrosion behavior of X65 steel in water-saturated supercritical CO2 streams [J]. Corros. Sci., 2022, 209: 110729
[10] Wang W H, Guang Y, Liu W, et al. Experimental investigation of stress corrosion on supercritical CO2 transportation pipelines against leakage for CCUS applications [J]. Energy Rep., 2023, 9: 266
[11] Sun C, Yang W J, Sun J B, et al. Hydrogen permeation and SCC susceptibility of X70 pipeline steel in CO2-saturated water environment containing acidic impurity [J]. Corros. Sci., 2024, 236: 112259
[12] Li W Y, Cao R H, Xu L N, et al. The role of hydrogen in the corrosion and cracking of steels-a review [J]. Corros. Commun., 2021, 4: 23
[13] Kairy S K, Zhou S, Turnbull A, et al. Corrosion of pipeline steel in dense phase CO2 containing impurities: A critical review of test methodologies [J]. Corros. Sci., 2023, 214: 110986
[14] Zeng Y M, Li K Y. Influence of SO2 on the corrosion and stress corrosion cracking susceptibility of supercritical CO2 transportation pipelines [J]. Corros. Sci., 2020, 165: 108404
[15] Li K Y, Zeng Y M. Long-term corrosion and stress corrosion cracking of X65 steel in H2O-saturated supercritical CO2 with SO2 and O2 impurities [J]. Constr. Build. Mater., 2023, 362: 129746
[16] Li K Y, Zeng Y M, Luo J L. Influence of H2S on the general corrosion and sulfide stress cracking of pipelines steels for supercritical CO2 transportation [J]. Corros. Sci., 2021, 190: 109639
[17] Sui P, Sun J B, Hua Y, et al. Effect of temperature and pressure on corrosion behavior of X65 carbon steel in water-saturated CO2 transport environments mixed with H2S [J]. Int. J. Greenh. Gas Con., 2018, 73: 60
[18] Yuan Y, Xiang Y, Li C, et al. Research progress on corrosion of CO2 injection well tubing in CCUS system [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 15
原 玉, 向 勇, 李 晨 等. CCUS系统中CO2注入井管材腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 15
[19] Li Y X, Liu X H, Wang C L, et al. Research progress on corrosion behavior of gaseous CO2 transportation pipelines containing impurities [J]. Acta Metall. Sin., 2021, 57: 283
李玉星, 刘兴豪, 王财林 等. 含杂质气态CO2输送管道腐蚀研究进展 [J]. 金属学报, 2021, 57: 283
doi: 10.11900/0412.1961.2020.00165
[20] Hu L H, Yi H L, Yang W J, et al. Effect of water content on corrosion behavior of X65 pipeline Steel in supercritical CO2 fluids [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 576
胡丽华, 衣华磊, 杨维健 等. 水含量对超临界CO2输送管道腐蚀的影响 [J]. 中国腐蚀与防护学报, 2024, 44: 576
doi: 10.11902/1005.4537.2023.227
[21] Morland B H, Norby T, Tjelta M, et al. Effect of SO2, O2, NO2, and H2O concentrations on chemical reactions and corrosion of carbon steel in dense phase CO2 [J]. Corrosion, 2019, 75: 1327
doi: 10.5006/3111
[22] Li W J, Zhang H X, Zhang H Q, et al. Effect of temperature on stress corrosion behavior of Ti-alloy Ti80 in sea water [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 111
李文桔, 张慧霞, 张宏泉 等. 温度对钛合金应力腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 111
doi: 10.11902/1005.4537.2022.028
[23] Dai H L, Tang J H, Shi S W, et al. Effects of pre-strain on hydrogen-induced stress corrosion cracking behavior of Q345R steel in hydrofluoric acid vapor environment [J]. Corros. Commun., 2024, 16: 71
[24] Wei L, Zhang Y C, Pang X L, et al. Corrosion behaviors of steels under supercritical CO2 conditions [J]. Corros. Rev, 2015, 33: 151
[25] Sun C, Liu J X, Sun J B, et al. Corrosion behaviors of X65 steel in gaseous CO2 environment containing impurities [J]. J. China Univ. Petrol. (Ed. Nat. Sci.), 2022, 46: 129
孙 冲, 刘建新, 孙建波 等. 含杂质气态CO2环境中X65钢腐蚀行为 [J]. 中国石油大学学报(自然科学版), 2022, 46: 129
[26] Kong D J, Wu Y Z, Long D. Stress corrosion of X80 pipeline steel welded joints by slow strain test in NACE H2S solutions [J]. J. Iron Steel Res. Int., 2013, 20: 40
[27] Shi R J, Tu Y Q, Gao K W, et al. High stress corrosion cracking resistance of in-situ nanoparticle strengthened steel [J]. Corros. Commun., 2022, 5: 14
[28] Zhang X, Xiao K, Dong C F, et al. In situ Raman spectroscopy study of corrosion products on the surface of carbon steel in solution containing Cl- and SO 4 2 - [J]. Eng. Fail. Anal., 2011, 18: 1981
[29] Nie X H, Li X G, Du C W, et al. Characterization of corrosion products formed on the surface of carbon steel by Raman spectroscopy [J]. J. Raman Spectrosc., 2009, 40: 76
[30] El Mendili Y, Bardeau J F, Randrianantoandro N, et al. Insights into the mechanism related to the phase transition from γ-Fe2O3 to α-Fe2O3 nanoparticles induced by thermal treatment and laser irradiation [J]. J. Phys. Chem., 2012, 116C: 23785
[31] Chio C H, Sharma S K, Muenow D W. Micro-Raman studies of hydrous ferrous sulfates and jarosites [J]. Spectrochim. Acta, 2005, 61A: 2428
[32] Chio C H, Sharma S K, Muenow D W. The hydrates and deuterates of ferrous sulfate (FeSO4): A Raman spectroscopic study [J]. J. Raman Spectrosc., 2007, 38: 87
[33] Morland B H, Dugstad A, Svenningsen G. Experimental based CO2 transport specification ensuring material integrity [J]. Int. J. Greenh. Gas Con., 2022, 119: 103697
[34] Quan Q, Zhang Y, Lei M, et al. Corrosion behavior of P110 steel in vapor-liquid phase of H2S/CO2 coexistence system [J]. Mater. Prot., 2024, 57: 52
全 青, 张 源, 雷 鸣 等. H2S/CO2共存体系气液相中P110钢的腐蚀行为 [J]. 材料保护, 2024, 57: 52
[35] Sun C, Sun J B, Liu S B, et al. Effect of water content on the corrosion behavior of X65 pipeline steel in supercritical CO2-H2O-O2-H2S-SO2 environment as relevant to CCS application [J]. Corros. Sci., 2018, 137: 151
[36] De Azevedo Rodrigues T R S, Marcolino J B, De Moraes M K, et al. Influence of CO2 subcritical and supercritical pressures on the protective properties of corrosion product scales formed on X65 steel [J]. J. Supercrit. Fluid., 2024, 206: 106184
[1] ZHANG Guoqing, YU Zhixia, WANG Yuesong, WANG Zhi, JIN Zhengyu, LIU Hongwei. Corrosion Behavior of Steel Materials in Marine Supercritical Carbon Dioxide Environment[J]. 中国腐蚀与防护学报, 2025, 45(4): 1061-1069.
[2] LI Weipeng, LUO Kunjie, WANG Huisheng, CHEN Jiacheng, HAN Yaolei, PANG Xiaolu, PENG Qunjia, QIAO Lijie. Effect of Precipitation on Stress Corrosion Cracking Initiation of Nickel Based 718 Alloy in High Temperature and High Pressure Water[J]. 中国腐蚀与防护学报, 2025, 45(4): 947-955.
[3] WU Yuhang, CHEN Xu, WANG Shoude, LIU Chang, LIU Jie. Stress Corrosion Behavior of X70 Steel in an Artificial Near-neutral Soil Solution Under Direct Current[J]. 中国腐蚀与防护学报, 2025, 45(2): 489-496.
[4] LI Kaiyang, WU You, ZHANG Guanlin, ZHANG Naiqiang. Research Progress of Environmental Cracking of Structural Metallic Materials for High Temperature Supercritical CO2 System[J]. 中国腐蚀与防护学报, 2025, 45(1): 61-68.
[5] ZHANG Zhuanli, DAI Hailong, ZHANG Zhe, SHI Shouwen, CHEN Xu. Stress Corrosion Cracking Behavior of 316L in Hydrofluoric Acid Solution[J]. 中国腐蚀与防护学报, 2024, 44(6): 1633-1640.
[6] SU Zhicheng, ZHANG Xian, CHENG Yan, LIU Jing, WU Kaiming. Comparative Study on Stress Corrosion Cracking Behavior of Ultrafine Bainitic Steel and Q&P Steel with Same Composition in Seawater[J]. 中国腐蚀与防护学报, 2024, 44(6): 1495-1506.
[7] ZHAO Qian, ZHANG Jie, MAO Ruirui, MIAO Chunhui, BIAN Yafei, TENG Yue, TANG Wenming. Stress Corrosion and Its Mechanism of Hot-dip Galvanized Coating on Q235 Steel Structure[J]. 中国腐蚀与防护学报, 2024, 44(5): 1305-1315.
[8] LIU Guangsheng, WANG Weijun, ZHOU Pei, TAN Jinhao, DING Hongxin, ZHANG Wei, XIANG Yong. Corrosion Behavior of Casing Steels 13Cr and N80 During Sequestration in an Impure Carbon Dioxide Environment[J]. 中国腐蚀与防护学报, 2024, 44(5): 1200-1212.
[9] LIU Jiuyun, DONG Lijin, ZHANG Yan, WANG Qinying, LIU Li. Research Progress on Sulfide Stress Corrosion Cracking of Dissimilar Weld Joints in Oil and Gas Fields[J]. 中国腐蚀与防护学报, 2024, 44(4): 863-873.
[10] HU Lihua, YI Hualei, YANG Weijian, SUN Chong, SUN Jianbo. Effect of Water Content on Corrosion Behavior of X65 Pipeline Steel in Supercritical CO2 Fluids[J]. 中国腐蚀与防护学报, 2024, 44(3): 576-584.
[11] LI Chan, WANG Qingtian, YANG Chenggang, ZHANG Xianwei, HAN Dongao, LIU Yuwei, LIU Zhiyong. Corrosion Behavior of 904L Super-austenitic Stainless Steel in Simulated Primary Water in Nuclear Power Plants[J]. 中国腐蚀与防护学报, 2024, 44(3): 716-724.
[12] CEN Yuanyao, LIAO Guangmeng, ZHU Yuqin, ZHAO Fangchao, LIU Cong, HE Jianxin, ZHOU Kun. Monitoring Technology for Stress Corrosion Crack Propagation of Al-alloy Based on Optical Fiber Bragg Grating[J]. 中国腐蚀与防护学报, 2024, 44(3): 815-822.
[13] YUAN Yu, XIANG Yong, LI Chen, ZHAO Xuehui, YAN Wei, YAO Erdong. Research Progress on Corrosion of CO2 Injection Well Tubing in CCUS System[J]. 中国腐蚀与防护学报, 2024, 44(1): 15-26.
[14] LI Shuang, DONG Lijin, ZHENG Huaibei, WU Chengchuan, WANG Hongli, LING Dong, WANG Qinying. Research Progress of Stress Corrosion Cracking of Ultra-high Strength Steels for Aircraft Landing Gear[J]. 中国腐蚀与防护学报, 2023, 43(6): 1178-1188.
[15] LI Jiayuan, ZENG Tianhao, LIU Youtong, WU Xiaochun. Corrosion Behavior of 4Cr16Mo Martensite Stainless Steel with 1% Cu Addition by Applied Stress[J]. 中国腐蚀与防护学报, 2023, 43(5): 1094-1100.
No Suggested Reading articles found!